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Wilson Ratio of Fermi Gases in One Dimension
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We calculate the Wilson ratio of the one-dimensional Fermi gas with spin imbalance. The Wilson ratio
of attractively interacting fermions is solely determined by the density stiffness and sound velocity of pairs
and of excess fermions for the two-component Tomonaga-Luttinger liquid phase. The ratio exhibits
anomalous enhancement at the two critical points due to the sudden change in the density of states.
Despite a breakdown of the quasiparticle description in one dimension, two important features of the
Fermi liquid are retained; namely, the specific heat is linearly proportional to temperature, whereas the
susceptibility is independent of temperature. In contrast to the phenomenological Tomonaga-Luttinger

liquid parameter, the Wilson ratio provides a powerful parameter for testing universal quantum liquids of
interacting fermions in one, two, and three dimensions.
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Fermi liquid theory describes the low-energy physics
of interacting fermions, conduction electrons, heavy fer-
mion metals, and liquid 3He [1]. It is remarkable that the
Wilson ratio, defined as the ratio of the magnetic suscep-
tibility y to specific heat ¢, divided by temperature T

Ry = E(W_’CB)ZL, 0

3 MBE Cv/ T
is a constant at the renormalization fixed point of these
systems. Here, kp is the Boltzmann constant, wp is the
Bohr magneton, and g is the Landé factor. For example,
Ry = 1 for noninteracting or weakly correlated electrons
in metals [1], and Ry = 2 in the Kondo regime for the
impurity problem [2]. The dimensionless Wilson ratio
quantifies the interaction effect and spin fluctuations and
thus presents a characteristic of strongly correlated Fermi
liquids [1]. Ry > 1 in strongly correlated systems where
the spin fluctuations are enhanced while charge fluctua-
tions are suppressed.

The Wilson ratio has recently been measured in experi-
ments on a gapped spin-1/2 Heisenberg ladder [3]. This
opens up the opportunity to probe and understand the
universal nature of one-dimensional (1D) quantum liquids
through the measurable Wilson ratio. Early calculations of
Ry for 1D correlated electrons were considered only in
the scenario of spin-charge separation [4,5]. As far as the
low-energy physics is concerned, the fixed point critical
Tomonaga-Luttinger liquid (TLL) behaves much like the
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Fermi liquid [6]. For instance, the Wilson ratio of the
quasi-1D spin-1/2 Heisenberg ladder near the critical point
indicates a single-component TLL with Ry, = 4 K, where
K is the TLL parameter. Moreover, the Wilson ratio is
always less than 2 as the band fillings tend towards the
Mott insulator in the 1D repulsive Hubbard model [5]. For
the 1D spin-1/2 Heisenberg chain, Ry = 2 as T — 0 [7].
Here, the Fermi liquid nature arises because the elementary
excitations at low temperatures are spinons which are
regarded as fermions.

Motivated by the experimental results for the spin ladder
[3], we consider the Wilson ratio in the context of the
spin-1/2 delta-function interacting Fermi gas [8,9]. The
quantum liquids exhibited by this model include the para-
digm of a spin-charge separated TLL in the repulsive
regime and a two-component TLL of pairs and single
fermions in the attractive regime. The pairing phase has
attracted a great deal of attention [10-16], with the key
features of the T = 0 pairing phase [17-19] experimentally
confirmed using finite temperature density profiles of
trapped fermionic °Li atoms [20,21].

In this context, the Wilson ratio of the 1D attractive
Fermi gas with polarization is particularly interesting due
to the coexistence of pairing and depairing under the
external magnetic field. It is natural to ask if the Wilson
ratio can capture a similar Fermi liquid nature of such a
particular pairing phase. Here, we report our key result for
the attractive Fermi gas
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which holds throughout the two-component TLL phase.
This result is in terms of the density stiffness v%" and
sound velocity v2" for pairs b and excess single fermions
u. These parameters can be calculated from the ground
state energy. Figure 1 shows that at finite temperatures,
the contour plot of Ry can map out not only the two-
component TLL phase but also the quantum criticality of
the attractive Fermi gas. The Wilson ratio thus gives a
simple testable parameter to quantify interaction effects
and the competing order between pairing and depairing.

The model.—The S-interacting spin-1/2 Fermi gas with
N = N; + N, fermions of mass m with external magnetic
field H is described by the Hamiltonian [8,9,21]

h N a Ny Ny
__mg_lerngZZa(x x)+E. (3

i=1j

in which the terms are the kinetic energy, interaction
energy, and Zeeman energy E, = —(1/2)gupH(N; —N)).

Here, the intercomponent interaction is determined by
an effective 1D scattering length g,p = —(24%/ma,p)
which can be tuned from the weakly interacting regime
(gip — 0F) to the strong coupling regime (g;p — *00)
resonances and

via Feshbach confinement-induced
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FIG. 1 (color online). Contour plot of the Wilson ratio Ry,
[Eq. (1)] of the attractive Fermi gas for dimensionless interaction
|y| = 10 as a function of the reduced temperature t = T/&,, and
magnetic field. g, is the binding energy. The result [Eq. (2)]
provides a criterion for the two-component TLL phase in the
region below the dashed lines, where Ry, is temperature inde-
pendent. The dashed lines indicate the crossover temperature

~ |H — H,| separating the relativistic liquid from the non-
relativistic liquid. Ry = 0 for both the TLL of pairs (PP) and the
TLL of excess fermions (F). In the critical regimes (CR), Ry
gives a temperature-dependent scaling. However, near the two
critical points, the ratio reveals anomalous enhancement, dis-
cussed further in the text. The inset shows the enhancement at
the lower critical point.

resonances [22]. g;p >0 (< 0) is the contact repulsive
(attractive) interaction. The total density n = n; + ny,
the magnetization M = (n; — n)/2, and the polarization
P = (n; — nj)/n, where n = N/L is the linear density and
L is the length of the system. For convenience, we define
the interaction strength as ¢ = mg,p/h? and dimensionless
parameter y = ¢/n for physical analysis. We set
Boltzmann constant kg = 1 and pupg = 1.

The thermodynamic properties of the model are
determined by the thermodynamic Bethe ansatz (TBA)
equations [23]. A high precision equation of state in the
physically interesting low temperature and strong coupling
regime (T < €,, H and -y > 1) has been derived [24,25].
The hydrodynamic description of the attractive gas
[Eq. (3)] is restricted to the limit cases ¢ — —oo and
c— 07 [26].

Susceptibility.—In the Fermi liquid, the interaction
enters the susceptibility and specific heat via the effective
mass and the Landau parameters [27]. Thus, the specific
heat increases linearly with the temperature 7" because only
the electrons within k5T near the Fermi surface contribute
to the specific heat. The susceptibility is independent of
temperature since only the electrons within wuzgH near the
Fermi surface contribute to the magnetization. This is a
consequence of the forward scattering process between
quasiparticles near the Fermi surface. In contrast, in 1D
many-body systems, all particles participate in the low-
energy physics and thus form collective motion of bosons,
i.e., the TLL. However, the TLL is also the consequence of
the forward scattering process involving low-lying excita-
tions close to Fermi points. Therefore, it is natural to
expect that 1D many-body systems have a Fermi liquid
nature in the low-energy sector.

Here, we find such a Fermi liquid signature of the 1D
Fermi gas using the analytic results for the susceptibility
and specific heat obtained via the TBA equations [28].
At zero temperature, the susceptibility can be calculated
from the dressed energy equations which are obtained from
the TBA equations in the limit 7 — 0 [28]. The dressed
energy equations give the full phase diagram and magnetic
properties in the grand canonical ensemble.

For values of the magnetic field between the lower and
upper critical fields H,; and H,,, the zero temperature
susceptibility of the gapless phase can be expressed in
the form

111
—= 4)
X Xu Xo

This result can be established on general grounds. The
effective magnetic field H depends on the chemical poten-
tial bias H := Ap = uy — p. The magnetization depends
on the difference An = n; — n;. We prove that the mag-
netic susceptibility y = (1/2)0An/dAu can be written
in terms of the charge susceptibilities of bound pairs

and excess fermions x;,, = (1/2)0n,,/dppul,,,, Where
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mp =+ €,/2, mu, = u + H/2, and the total density n
is fixed. Here, n, and n, are the densities of pairs and
excess fermions. Physically, the system has two processes
occurring in parallel, namely, the breaking of pairs and the
alignment of spins. The analog for the zero temperature
susceptibility of the gapless phase is thus two parallel
resistors in a circuit.

We also find that the effective susceptibilities for the
TLL of bound pairs and the TLL of excess fermions are
expressed as y;, = 1/(hmv}) and y, = 1/(4hmvY). The
density stiffness parameters are obtained from v}, =
(L/7h)(82EL/dN?) for a Galilean invariant system, with
r = 1 for excess fermions and r = 2 for bound pairs. For
the strongly interacting regime (y > 1), the ground state
energies for the pairs and excess fermions are given explic-
itly by [19] Ej = (*/2m)(7*N3/3rL?)(1 + (24,/|cl) +
(3A%/C2)) with Al = 41’[2 and A2 = 2]’11 + ny. Here, ny
and n, are the density of excess fermions and pairs,
respectively. Thus,

han 4 3
UI’{, = 2m2 [1 + m(n —3n,) + ?(4112 —24nn, + 30n%)],

h 4 4
vl =ﬂ|:l +-—(n—2n,) -l-—2(3»n2 +10n? — 12nn1)].
m [c]| c

The analytic expression (4) with these velocities is in
excellent agreement with the numerical results (see the
inset in Fig. 2).

The onset susceptibility at the lower and upper critical
fields H,; and H,, is related to the collective nature of the
pairs and excess fermions, with

X analytical
O energy relation
—— numerics

x&,/lcl

FIG. 2 (color online). The dimensionless susceptibility vs
magnetic field for |y| = 10 at different temperatures. The sus-
ceptibility is independent of temperature for T < H — H,.; and
T < H., — H. Round peaks of the susceptibility in the vicinity
of the two critical points are observed at low temperatures. The
inset shows the susceptibility for |y| =5 and 10 at T = 0.
The pink crosses denote the analytic result [Eq. (4)] which is
in excellent agreement with the numerical results obtained from
the field-magnetization relation [19] (red circles) and from the
dressed energy equations [28] (blue lines).
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Here, vi and K" = v}/v}, are the sound velocities
and effective TLL parameters of the bound pairs

and excess single fermions. From the relation v} =

\/(L/mnr)(azE()/aLz), the velocities are given by
vl = (h/2m)Q2mn,/r)(1 + 24, /|c| + 34%/c3).

The separation of the susceptibility [Eq. (4)] naturally
suggests that the low-energy physics of the polarized
pairing phase is described by a renormalization fixed point
of the two-component TLL class, where the interaction
effect enters into the collective velocities, or equivalently
the effective masses of the two TLLs are varied by the
interaction. At finite low temperatures, the two-component
TLL acquires a universal form F(T,H) =~ Ey(H) —
(mk3T?/6h)(1/v2 + 1/v¥) of the free energy. For tem-
perature T<<H — H,; and T < H., — H, the susceptibility
is indeed independent of temperature, provided that
—02(1/v? + 1/v")/0H?* = 0; see Fig. 2. We clearly see
that the 7 = 0 divergent susceptibility near the critical
point H,; evolves into round peaks at low temperatures.
The peak hight decreases as the temperature increases.
Here, the leading irrelevant operators gives a correction
of the order O(T?) to the low energy in the vicinities of the
two critical points.

For the quantum critical regime (T > H — H,.; and
T > H,, — H), the susceptibility defines the universality
class for quantum criticality of nonrelativistic Fermi
theory, with [28]

X~ |fl[)mo + AL (=l hall/ ] ()

b

Near the critical point h, = —2 + (32/37/2) X
(i +1/2)%2, we have Ay =0 and A = 1/(82m) %
[1—=(6/m)\(h — h,)/2] with « =1/2, t =T/¢,, and
h = H/e€,. Here, the dynamical critical exponent z = 2
and correlation length exponent v = 1/2 for different
phases of the spin states. Near the upper critical point
h.,, the susceptibility defines a similar form as Eq. (7),
but with the background susceptibility Ay # 0 [28].

Specific heat.—We turn now to the specific heat of the
attractive Fermi gas. The low temperature expansion of
the TBA equations with respect to T << H, €, gives

2T (1 1
- THT(L )

3n \vy vy

The linear T dependence of the specific heat is a conse-
quence of linear dispersions in branches of pairs and
single fermions. The breakdown of this linear
temperature-dependent relation defines a crossover
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temperature T* which characterizes a universal crossover
from a relativistic dispersion into a nonrelativistic disper-
sion [24,29].

We see clearly in Fig. 3 that at low temperatures, a peak
evolves in the specific heat near each of the two critical
points, i.e., near P = 0 and P = 1 due to a sudden change
in the density of states. We also note that the peak positions
mark the TLL specific heat curve [Eq. (8)]. The two peaks
merge at the top of the TLL phase in Fig. 1. Thus, the peak
position in turn gives the TLL phase boundary in the
¢, — P or ¢, — H plane. The specific heat obtained from
the equation of state [25] also defines a scaling behavior

,2ms _ . _ v
cy ~ hztzh[VO + Vstd/z+1 2/VZL1_1/2(_e[a(h h)]/tY )]’

9

where v, v, and « are constants which can be determined
from the closed form of the specific heat if necessary [28].
The two-component TLL specific heat [Eq. (8)] is clearly
manifest in Fig. 3 from the numerical result obtained using
the equation of state.

Wilson ratio.—The linear temperature-dependent nature
of the specific heat and the separable feature of the sus-
ceptibility give the Wilson ratio [Eq. (2)] for the effective
low-energy physics of the two-component TLL. This
Wilson ratio for the 1D attractive Fermi gas is significantly
different from the ratio obtained for the field-induced gap-
less phase in the quasi-1D gapped spin ladder [3], where
the gapless phase is a single-component TLL [4,6] and the
ratio gives a renormalization fixed point of a linear
spin-1/2 chain in zero field. It is interesting to note that
for the 1D attractive Fermi gas, the onset Wilson ratio also
depends solely on the TLL parameters, with

WR'H—»H(.I = 4Kb|n2—>n/2r

WR'H—»HEZ = Kulnl—m'

Here, we find

Kb =1+ Enz + i112(3112 + 4n),
lel ¢
1+ inl + inl(nl + 2n).
lel ¢
Note that the values in the limit of infinitely strong cou-
pling are Wy = 4 at H.; and Wy = 1 at H,.

The anomalous enhancement of the Wilson ratio near the
onset values is shown in Fig. 4. Anomalous enhancement of
the Wilson ratio has been observed near the metal-insulator
transition in simulations of a three-dimensional quantum
spin liquid [30]. Here, for the 1D attractive Fermi gases, this
anomalous divergence is mainly due to sudden changes in
the density of states either in the bound state or excess
fermion branch. Again, deviation from the Wilson ratio
[Eq. (2)] gives the crossover temperature 7"~ |H — H,|
separating the TLL from the free fermion liquid near the
critical points. In addition to the anomalous divergence
of the onset Wilson ratio, a round peak is observed near
P = 0.1 due to the competing ordering of the two TLLs.
Ry <1 for finite values of the polarization (0 < P < 1).

In contrast to this enhancement, for the repulsive regime,
the Wilson ratio is always less than 2, i.e., Ry = 2/(1 +
v,/v.), which simply gives a fixed point of the TLL in the
context of spin-charge separation. Here, the charge and
spin velocities v, , can be calculated following Ref. [31].

The Wilson ratio of 1D Fermi gases can in principle be
measured in experiments. The finite temperature density
profiles of a 1D trapped Fermi gas of ®Li atoms have been
measured [20]. Most recently, the susceptibility has been
directly obtained from the density profile of the trapped
atomic cloud in higher dimensions [32]. High precision
measurements of thermodynamic quantities have also been
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FIG. 3 (color online). Dimensionless specific heat vs polariza-
tion for |y| = 10 at different temperatures. The deviation from
linear temperature dependence [Eq. (8)] (red crosses) indicates
the breakdown of the two-component TLL. The inset shows a
round peak evolved near H,; at 7 = 0.00001¢,.
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FIG. 4 (color online). Wilson Ration vs polarization for |y| =
10 at different temperatures. The numerical result obtained from
the equation of state fully agrees with the Wilson ratio [Eq. (2)]
(red crosses) for the two-component TLL phase. The deviations
from the result [Eq. (2)] characterize the crossover temperature
T*. Anomalous behavior is found near P = 0 and P = 1 (see the
inset for the region near the critical point H,;).
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reported [33]. For the 1D case, the predicted susceptibility
could be tested from the density profiles n;; and the
chemical potential bias.

The Wilson ratio of the 1D attractive Fermi gases which
we have obtained provides a measurable parameter to
quantify different phases of quantum liquids in 1D inter-
acting fermions with polarization. At low temperatures, the
Fermi liquid nature is retained in 1D many-body systems
of interacting fermions. Our analysis can be adapted to
different systems, such as interacting fermions, bosons,
and mixtures composed of cold atoms with higher spin
symmetry.
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