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Inducing coherence in networks of bistable maps by varying the interaction range
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Ordinarily, two different topologies have been used to model spatiotemporal chaos and to study complexity
in networks of maps: one where sites interact only with nearest neighbors~e.g., the standard diffusive coupling!
and one where sites interact with all sites in the network~global coupling!. Here we investigate intermediate
regimes considering the interaction range as a free tunable parameter. The synchronization behavior normally
seen in globally coupled maps is found to set in for interaction ranges considerably smaller than the system
size. In addition, we analytically derive stability conditions for the onset of coherent states~full synchroniza-
tion! from which the minimum interaction range needed to induce coherence in homogeneously coupled maps
can be determined. Such conditions are also obtained for inhomogeneous situations when the coupling strength
decreases linearly with the distance. The characteristic range for the onset of coherence is studied in detail as
a function of model parameters.
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I. INTRODUCTION

Networks of coupled maps are popular nowadays
model collective behavior of physical systems such as la
@1#, Josephson junction arrays@2#, electric circuits@3#, con-
nected oscillators@4#, and many others@5–8#. Until recently,
it was common to use eitherregular or random networks
even though, as is well known, these choices are not
equate to describe all natural phenomena. An interesting
to mitigate this shortcoming is to consider the dynamics
small-worldnetworks@9#, namely regular networks with in
creasing amounts of disorder. These systems can be h
clustered, like regular lattices, yet have small characteri
path lengths, like random graphs@9#. This type of network is
a hot topic of research today because it is useful to desc
natural phenomena ranging from semiconductor laser ar
@10#, patterns in electronic circuits@11#, damage spreading in
Ising models@12#, disease propagation and various epid
miological effects@13–16#, and even in sociological phe
nomena such as rumor spreading and the interactions
tween networks of acquaintances@17–19#.

For regular networks, where space plays a very decis
role, the standard way of investigating complexity is by co
sidering sets of oscillators described locally either with d
ferential equations or with discrete mappings@20#. A very
popular model of regular network is thecoupled map lattice
which, ordinarily, has been used with two different topo
gies so far. One topology originates from discretizations
differential operators and involves sites which interact o
with nearest neighbors, either under the standard diffus
coupling @8# or its diffusive-advective extension@21#. The
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second topology involves consideringglobal coupling, when
each site receives simultaneous feedback from all other s
in the network through a ‘‘mean field.’’

In the same way as small-world networks explores mid
ground between regular and random networks, an interes
open question is to investigate how theinteraction range
affects collective behavior in dynamical systems and, in p
ticular, how the dynamics evolves as the topology chan
from local to global coupling. These questions are import
in several applications, in particular in problems involvin
synchronization in gradient flows and in models of oce
convection@21–23#.

The purpose of this paper is to investigate synchroniza
phenomena in coupled map lattices considering the inte
tion range as a freely tunable control parameter. In gene
two main types of synchronization have been obser
@5–7#: full and partial synchronization. Oscillators are said
be fully synchronized when they all have identical amp
tudes at each time step, i.e., when they are all in the s
state. Fully synchronized states are also called uniform
coherent states. Oscillators are said to bepartially synchro-
nized when the system assumes a state composed by se
domains, called clusters, each one characterized by a ce
number of adjacent oscillators evolving coherently~fully
synchronized!, but forming altogether a nonuniform state.

Synchronization effects have been reported forglobal
coupling @7,26–30#, showing that it is possible to observ
transitions from partial to full synchronization and, in add
tion, coherent states were observed for a wide range of
rameter values. Forlocal coupling, additional nontrivial be-
haviors are observed, e.g., spatiotemporal intermittency@8#,
pattern selection@8,31#, and traveling waves@21,22,31#. Syn-
chronized states may be also found under local coup
@8,31# but only for very specific choices of parameters and
initial conditions.

The differences observed in the dynamics under b
©2004 The American Physical Society09-1
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LIND, CORTE-REAL, AND GALLAS PHYSICAL REVIEW E69, 026209 ~2004!
types of coupling lead naturally to the question of how c
herence arises when tuning between local and global c
plings. For instance, is there some threshold of the inte
tion range beyond which coherence is always observ
How large is this threshold? How does it depend on mo
parameters? In this paper we answer these questions, s
ing that it is possible to determine analytically stability co
ditions for the appearance of coherence states and, f
them, to derive interaction range thresholds for coheren
An interesting finding is that transitions from partial to fu
synchronization occur not only when increasing the coupl
strength as reported in the literature, but also when incre
ing the range of interaction. Furthermore, we find that s
chronization behaviors routinely ascribed to maximum int
action range~i.e., to ‘‘globally’’ coupled maps! are in fact
observed to set in for significantly shorter interaction rang
with the system remaining thereafter insensitive to furt
increase in the number of neighbors.

We start in Sec. II presenting the model used, which
lows a separate consideration of both homogeneous an
homogeneous couplings and for two types of updating
physical importance. In Sec. III we give an illustrative e
ample of a coherent state which appears when the interac
range increases from local coupling. With the help of t
example we study numerically the dependence of transit
between nonuniform and coherent states on the local b
bility, on the coupling strength and on the lattice size. In S
IV we analyze coherent states in detail determining stab
conditions as a function of the interaction range, for bo
types of updating and for homogeneous and inhomogene
couplings. Our conclusions are presented in Sec. V.

II. SPATIALLY ISOTROPIC MODEL

As mentioned above, our goal is to investigate the imp
of varying the interaction range in networks of coupl
maps. To this end we introduce a convenient control par
eter R, the ‘‘interaction range,’’ specifying the number o
neighbors responsible for the feedback in the network. F
mally, there are many possible ways to interpolate betw
local and global coupling. For simplicity we assume neig
bors to be symmetrically placed around each site.

As usual, using« to represent the coupling strength,
<«<1, i 51, . . . ,L to represent space (L is the total num-
ber of oscillators! and t to represent a discrete time variabl
our spatially isotropic model reads

xt11~ i !5~12«! f „xt~ i !…1
«

2R (
j 51

R

WR, j@g„xt~ i 1 j !…

1g„xt~ i 2 j !…#, ~1!

where the interaction rangeR is an integer number that ma
vary between 1 and@(L21)/2#, the integer part of (L
21)/2. In this expression,f (x) rules the local dynamics
while g(x) controls interactions among oscillators. The
functions contain all nonlinearities of the model and, ad
tionally, g(x) is used to define the type of updating:g(x)
5x, which we call an updating withlinear coupling, and
02620
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g(x)5 f (x), which we call an updating withnonlinearcou-
pling, sincef (x) is presumed to be a nonlinear function ofx.
We use periodic boundary conditions.

For g(x)5x the sum in Eq.~1! represents an average ov
the states of theR nearest neighbors, while forg(x)5 f (x)
the sum averages their corresponding local oscillatio
Therefore, by considering separately both types of updatin
we intend to investigate how these different ‘‘mean field
influence the stability of coherent states. Below we show t
although the stability conditions are quite different, the c
responding eigenmodes are qualitatively the same~see Fig. 9
below!.

The weightsWR, j in Eq. ~1! allow one to vary the relative
importance of the sites composing the neighborhood and
isfy a normalization which, for later convenience, we wr
as

(
j 51

R

WR, j5R. ~2!

The simplest choiceWR, j51 for all j provides a homoge-
neous coupling, by far the most frequently studied situati

For R51, Eq. ~1! reproduces the usual local couplin
regime while forR5@(L21)/2# it corresponds to the famil-
iar globally coupled maps. The interaction term in Eq.~1!
does not contain the amplitudesxt( i ) andxt(L/2) for L even,
differently from to the usual model of globally coupled ma
@7#. However, numerical results forR5@L21#/2 are very
similar to those observed when using the usual global c
pling model@26# and, therefore,R5@L21#/2 indeed corre-
sponds to this limit. In general, the ‘‘interaction term’’ in Eq
~1!, namely the collection of all terms having« as coeffi-
cient, may be though physically as arising from a discreti
tion of the Laplacian operator averaged overR successive
spatial increments.

Variable interaction ranges were considered before.
instance, Chate´ and Manneville@32#, Zhilin et al. @33#, and
Carretero-Gonza´lez et al. @34# essentially use equation
which may be transformed into Eq.~1! above with WR, j
51, while Baptista and Viana@35# use a power-law coupling
in the interaction term. These studies considered either n
linear @32,35# or linear@33,34# coupling updatings. All these
works deal with local dynamics ruled by the quadratic ma
which is monostable, i.e. allows the presence of just o
stable attractor at finite distances.

Motivated by recent applications of cubic maps in t
investigation of aspects of ocean convection@23,36#, here we
also consider cubic local dynamics ruled by the equation

xt115 f ~xt![2xt
31axt1b, ~3!

wherea andb are real parameters. This map isbistable~has
two stable fixed points! and, therefore, allows the investiga
tion of competition between two different phases in the n
work, as is done in Sec. III.
9-2
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FIG. 1. Upper row: time evolution of the oscillators in a lattice withL5100 sites, starting from random initial conditions, homogene
coupling, linear updating,a51.5 andb50. Three different situations are illustrated:~a! uncoupled regime («50), ~b! local coupling (R
51 with «50.3), and~c! coupling beyond the nearest neighbors forR535 also for«50.3. Lower row: stationary patterns reached afte
transient of 1000 time-steps. Dashed lines indicate admissible local amplitudes,A,B, . . . , for each case.
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III. TWO ‘‘ROUTES’’ TO COHERENCE

In this section we study the dynamics of the transiti
from nonuniform to coherent states as a function of the
teraction rangeR, under linear updating,g(x)5x, and ho-
mogeneous coupling,WR, j51. Motivated by the aforemen
tioned application in ocean convection@23#, we select the
following parameters:a51.5 and 2b<b<b, where b
5A6/18, so that the cubic map@Eq. ~3!# supports two stable
fixed points.

The upper row of Fig. 1 shows the time evolution of 1
individual oscillators while the lower row shows the corr
sponding spatial configuration after a transient of 104 time
steps. For clarity, Fig. 1 displays the evolution only 50 of t
100 oscillators. For reference, in the first column one s
the evolution in time and space for the uncoupled case«
50), while the next two columns show the evolution wh
«50.3, for R51 andR535.

For «50, when the oscillators are totally uncoupled, th
time-evolution must converge towards one of the two p
sible stable fixed points of Eq.~3!. The specific fixed point
chosen by each oscillator depends the initial condition. T
final spatial configuration of the lattice is composed by
certain number of ‘‘clusters’’~adjacent oscillators with iden
tical amplitudes@24#!, such number being typically of th
order of the lattice size. In other words, the uncoupled
gime is characterized by a nonuniform~non fully synchro-
nized! state displaying only two possible amplitud
~bistable oscillators!.

When the coupling is switched on, neighboring oscillato
start to synchronize, decreasing the number of clusters
increasing their sizes. The second column in Fig. 1 illustra
this situation for the same 100 oscillators, this time coup
locally (R51). From the pattern on the bottom row, on
observes that now there are more than just two admiss
final amplitudes. In other words, although both stable fix
02620
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points A and B remain admissible amplitudes, addition
stable amplitudes, sayX, W, Z, . . . appear, as schematical
indicated by dashed lines in the figure. Therefore, for sh
interaction ranges configurations are still nonuniform but d
play localmultistability.

Increasing the number of neighbors (R.1) one observes
a gradual decreasing of the number of clusters until the fe
back generated by the 2R neighbors is sufficiently strong to
induce coherence, i.e., to force all sites towards thesame
amplitude, as illustrated by the amplitudeB in the last col-
umn of Fig. 1.

Figure 2, obtained for the same parameters as Fig. 1,
plays the fractionN of coherent states as a function of th
range, from a sample of 1000 realizations. From this fig
two basic facts emerge:~i! the transition from nonuniform to
coherent states is rather ‘‘smooth’’: the fraction of initial co
ditions which converge towards coherence increases es

FIG. 2. Fraction of coherent states as a function of the inter
tion rangeR over a sample of 1000 sets of random initial cond
tions, after a transient of 104 time-steps. Herea51.5, b50, «
50.3 andL5100, as in Fig. 1. Beyond the thresholdRt all oscil-
lators evolve coherently, i.e.N51.
9-3
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FIG. 3. FractionN of coherent states as a function of the interaction rangeR and~a! the coupling strength« for b50 and~b! the bistable
parameterb for «50.3. The values of coherence thresholdRt are shown on the right~see the text!. The lattice was sampled 500 times an
the fraction of coherent states computed after 104 time steps. Herea51.5 andL5100.
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tially linearly with R (N}R), and~ii ! beyond a characteristi
thresholdRt , all oscillators have the same amplitude a
evolve coherently from then on. For the situation depicted
Fig. 2 one hasRt527, meaning that the minimum number
neighbors in the interaction term of Eq.~1! to guarantee co-
herence is 2Rt554.

As is clear from Fig. 2, for any rangeR>Rt all coherence
effects usually ascribed to ‘‘global’’ coupling~namely toR
[@(L21)/2#) are already observed. In other words, beyo
Rt oscillators are totally insensitive to additional feedba
from distant neighbors. In particular,Rt may be considerably
shorter than the lattice size. Notice that it is possible to
serve coherent states forR,Rt . However, the thresholdRt
is defined here as the range beyond which a coherent sta
reached for essentiallyany choice of initial conditions. In
other words, forR.Rt the basin of attraction of coheren
states essentially fills the entire space of the initial conditi
available to the system.

TheRt dependence on the coupling strength« is shown in
the upper row of Fig. 3, where the fraction of coherent sta
is given on the left as a function of the interaction range a
the coupling strength. The corresponding values ofRt are
shown on the right. As one sees, the thresholdRt decreases
with the coupling strength and no coherent states are
served, neither for small ranges,R&5, nor for small cou-
pling strengths,«&0.2.

From Fig. 3 one clearly sees that it is possible to indu
coherence by two different ways: by increasing the coupl
strength or by increasing the interaction range. The first s
ation was previously observed in an interesting paper
Zanette @37# while studying a set of coupled differentia
equations containing a cubic nonlinearity. We now show t
02620
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this scenario can also be observed in discrete-time mod
being one of the two possible scenarios.

Figure 3~b! shows the behavior ofRt when the bistability
b varies. In the interval20.03,b,0.03, the thresholdRt
reaches a maximum atb50, decreasing symmetrically with
ubu. In the rest of the interval2b<b<b, not shown in Fig.
3~b!, one hasRt51 due to the fact that one of the stab
fixed points of Eq.~3! has a much larger basin of attractio
than the other.

The dependence ofRt as a function of both bistabilityb
and diffusion« is summarized in Fig. 4, for the same valu
a51.5 andL5100 as before. The symmetry aroundb50
reflects the symmetry of the basin of the fixed points of
local cubic map~see Fig. 2 of Ref.@23#!. For «&0.2, one
observes thatRt is the lattice sizeL itself (R*L/2), while

FIG. 4. The thresholdRt as a function ofb and«. The cuts at
b50 and «50.3 are shown in Figs. 3~a! and 3~b!, respectively.
Here a51.5 andL5100 and for each pair (b,«) samples of 200
initial conditions were used.
9-4
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INDUCING COHERENCE IN NETWORKS OF BISTABLE . . . PHYSICAL REVIEW E 69, 026209 ~2004!
for «*0.7 we find that coherence is already observed for
number of neighbors (Rt51).

The influence of the lattice size is displayed in Fig.
whereRt is shown as a function ofL, for several values of
the coupling strength, namely,«50.3, 0.4, 0.5, 0.7, and 0.9
and for b50. From this figure one clearly sees that t
thresholdRt increases linearly withL, while the slopeRt /L
decreases with«. Our simulations have shown that the lin
earity betweenRt and the lattice size holds only in a neig
borhood ofb50. An illustration of this fact may be seen i
the inset of Fig. 5 where, apart from the different slopes
linear variation seems to exist forb50.003, but not forb
50.005. Once again, the reason for this behavior is t
outside theb50 neighborhood, one of the fixed points of th
local cubic map has a much larger basin of attraction than
other one and, therefore, almost all sites converge alway
the same amplitude even for very short interaction range

So far we have focused in the parameters leading to
herent states without worrying about which precise am
tudes characterize these states. Since multistability is o
ously present in the cubic map, being in fact a feature that
want to explore in later applications, in the next section
study specific coherent states supported by the model in
~1! and investigate their stability.

IV. STABILITY OF COHERENT STATES

In this section we consider homogeneous and inhomo
neous coupling for both types of updatings,g(x)5x and
g(x)5 f (x), deducing stability conditions for coheren
states, reverting the procedure previously used: instea
starting from a random nonuniform state and studying
transition to coherence, we now analytically determine
coherent states, and investigate how they lose stability w
varying parameters.

FIG. 5. The thresholdRt as a function of the lattice sizeL for
five different coupling strengths, all forb50. The inset showsRt

for b50.003 andb50.005, both for«50.3. Results from simula-
tions are represented by symbols while the corresponding linea
are plotted with lines, which have correlation coefficients alwa
greater than 0.993. Here,a51.5 and a transient of 50 000 time ste
was used for a sample of 50 sets of initial condition.
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We obtain two different stability conditions, yielding tw
different scenarios for coherent states to lose their stabi
through a period-doubling bifurcation or through a metam
phosis with the stabilization on a nonuniform state. Furth
more, we show that the period-doubling bifurcation is
function of the coupling strength only, while the transition
nonuniform states depends also on the interaction range.
stability conditions obtained are very general, remain
valid for any local dynamics, although they are applied he
to the specific cubic map of Eq.~3!.

A. Linear and homogeneous coupling

For homogeneous coupling and linear updating Eq.~1!
reduces to

xt11~ i !5~12«! f „xt~ i !…1
«

2R (
j 51

R

@xt~ i 1 j !1xt~ i 2 j !#.

~4!

Coherent states are obtained from Eq.~4! when substituting
xt( i ) by a spatially constant amplitude, sayXt . For coherent
states with period 1, one has only one valueXt[X for all
time steps, and the stability conditions are determined fr
the Jacobian matrix of Eq.~4!, namely,

J5
]@xt11~ j !#

]@xt~ i !#

5circS ~12«! f 8,
«

2R
, . . . ,

«

2R
,0, . . . ,0,

«

2R
, . . . ,

«

2RD ,

~5!

where ‘‘circ’’ indicates thecirculant form @38# of the matrix
J, and i , j 51, . . . ,L and f 8[ f 8(X) is the first derivative of
f (x) computed at the amplitudeX of the coherent state. Th
eigenvalues ofJ are @38#

l,5~12«! f 8~X!1
«

2R (
j 51

R

~v,,L
j 1v,,L

L2 j !, ~6!

where,51, . . . ,L, and the coefficientsv,,L represent the
Lth roots of unity,

v,,L5expS i
2p~,21!

L D . ~7!

We now analyze the stability of a period-1 coherent stateX,
evaluatingall eigenvaluesl, in three steps.

First, substituting Eq.~7! into Eq.~6!, one obtains a more
convenient expression

l,5~12«! f 8~X!1
«

R (
j 51

R

cosS 2p~,21! j

L D . ~8!

For ,51 the eigenvalue does not depend onR:

l15~12«! f 8~X!1«, ~9!

ts
s
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LIND, CORTE-REAL, AND GALLAS PHYSICAL REVIEW E69, 026209 ~2004!
while for all other values of,, 2<,<L, the eigenvalues
reduce to

l,5~12«! f 8~X!1«h~R,L,, !, ~10!

whereh(R,L,,) is given by~see the Appendix!

h~R,L,, !5
1

R

sin~Ra!cos@~R11!a#

sina
, ~11!

wherea5(,21)p/L.
Second, as is well known@25#, coherent states always li

on the main diagonal of phase-space being, therefore,
portional to theL-dimensional vector (1, . . . ,1).This vector
is the only eigenvector of the Jacobian with eigenvaluel1.
Thus, assuming that all the other eigenvalues have ma
tudes less than 1, the coherent state with periodt51 is
stable if and only iful1u,1, yielding

2
11«

12«
, f 8~X!,1. ~12!

The upper limit in Eq.~12! corresponds to the tangent bifu
cation of the local map, while the lower limit corresponds
a period-doubling bifurcation, in which a stable cohere
state of periodt52 appears. When«50 Eq.~12! reduces to
the usual stability condition of the local map,u f 8(X)u,1.
When «Þ0, Eq. ~12! shows that the size of the interval o
stability increases with«.

Third, the eigenvalues other thanl1 belong to the mani-
fold transverse to the main diagonal. Thus, the stability c
dition ul,u<1 must also hold for all,52, . . . ,L, yielding

j2~a,b,«!,h~R,L,, !,j1~a,b,«!, ~13!

where

j6~a,b,«!5S 12
1

« D f 8~X!6
1

«
. ~14!

When h(R,L,,) crosses one of the two boundaries,j1 or
j2 , the coherent states lose stability and a nonuniform s
appears.

In short, when Eq.~13! is satisfied, period-1 coheren
states are stable in the range defined by Eq.~12! and bifur-
cate to a period-2 coherent state when crossing the lo
boundary. On the other hand, as long as Eq.~12! holds, the
coherent states may only lose stability by ‘‘bifurcating’’ to
nonuniform state whenh(R,L,,) crosses one of the bound
ariesj2 or j1 in Eq. ~13!.

Next, we will assume that the condition in Eq.~12! holds,
and study the loss of synchronization with the emergenc
a nonuniform state, occurring whenh(R,L,,)5j1 or
h(R,L,,)5j2 . It is important to notice thath(R,L,,) is
defined in the interval@21,1#, regardless the lattice sizeL.
Therefore, we need to investigate now all possible interv
generated by the conditionsuj6u.1 and uj6u,1. Since
j2.21 andj1,1 yields no solutions, altogether there a
four cases to be investigated.
02620
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~I! When j2.1 or j1,21, coherent states are alway
unstable, since Eq.~13! is never satisfied. However, this situ
ation never occurs because Eq.~12! must be obeyed.

~II ! Whenj2,21 andj1,1, coherent states are stab
as long as21,h(R,L,,),j1(a,b,«). This situation also
never occurs because Eq.~12! must be obeyed.

~III ! When j2,21 and j1.1, coherent states are a
ways stable since Eq.~13! is always satisfied. Notice tha
j2,21 and j1.1 is equivalent to saying that21
, f 8(X),1. Thus, in the region where the fixed points of t
local dynamicsf (x) are stable, coherent states will be stab
regardless of the lattice size and interaction range.

~IV ! Whenj2.21 andj1.1, coherent states are stab
as long asj2(a,b,«),h(R,L,,),1. This situation occurs
for 2(11«)/(12«), f 8(X),21. Thus, there is a set o
values (R,L,,) satisfying

h~R,L,, !.S 12
1

« D f 8~X!2
1

«
, ~15!

for which the coherent states are stable, and the thresholRt
is the lowest value ofR satisfying Eq.~15! for all possible
values of,. Notice that, since21<h<1, it is only neces-
sary to consider21/(12«), f 8(X),21, because for the
rest of the interval,2(11«)/(12«), f 8(X),21/(12«),
the condition of Eq.~15! does not hold for any interaction
range.

Summarizing, for a given set of parameters (a,b,«,L), it
is possible to compute analytically the thresholdRt where
coherence appears. All these considerations are genera
dependently of the local dynamicsf (x). Now we apply the
above results to the cubic map, Eq.~3!.

For «51, a brief analysis shows that coherent states m
only have periodt51 because of the updating. For«Þ1,
period-1 coherent states are the fixed points of the local
bic map, solutions ofX5 f (X), namely,

A5r1
u

r
, ~16a!

B5vr1v2
u

r
, ~16b!

C5v2r1v
u

r
, ~16c!

whereu5(a21)/3, r is anyone of the cubic roots ofb/2
1AD, with D being the discriminant,

D[S b

2D 2

1S 12a

3 D 3

, ~17!

andv5(211 iA3)/2.
Coherent states must havereal values and, therefore, i

D.0 then onlyA is real whileB andC are complex conju-
gate, implying existence of only one coherent state. IfD
<0, then all three solutions are real. ForD50 one finds two
different coherent states,A and B5C. Figure 6~a! shows
these three regions,D,0, D50, andD.0, as functions of
9-6
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FIG. 6. Stability regions of coherent states in networks of coupled bistable maps.~a! Fixed points of the cubic map, Eq.~3!, defining the
three possible coherent states,A, B andC, given in Eq.~16!. Solid lineD50 separates two regions:~i! D.0 with only one coherent state
A and~ii ! D,0 with three coherent states,A, B andC. The solid line also indicates the boundary where tangent bifurcation occurs forB and
C. For A the tangent bifurcation occurs only at the cusp (a,b)5(1,0). Dotted and dashed lines represent the lines where period-dou
bifurcation occurs forA andC, respectively. For the coherent stateB no period doubling occurs, i.e.,f 8(X)Þ21 always, as can be seen from
~b! where f 8(X) is plotted forX5A, B, andC, whenever they are real.
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a and b. The degenerate caser50 ~i.e., D50 andb50),
not included in Eq.~16!, yieldsA5B5C50, corresponding
to a cusp at (a,b)5(1,0). The cusp can be easily observed
Fig. 6~b!, where the three-dimensional plot shows the va
of f 8 of each coherent state, whenever real. Figure 6~a! also
shows the bifurcations lines whereu f 8u51 for each coheren
state.

So far, we determined period-1 coherent states. To c
clude this section we now study higher period-doubling
suming, as before, that Eq.~13! holds.

When Eq. ~13! holds, coherent states are defined by
period-t orbit, $X1 , . . . ,Xt%. Substituting these amplitude
into Eq. ~4! we obtain a one-dimensional map for cohere
states, namely,

Xt1152~12«!Xt
31@«~12a!1a#Xt1~12«!b, ~18!

with t51, . . . ,t. Equation~18! clearly shows that the am
plitudes composing periodic orbits of coherent states are
ways independent of the interaction range.

Figure 7 shows stability domains in parameter space
coherent states observed for three different coup
02620
e

n-
-

a

t
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r
g

strengths,«50, 0.1 and 0.3. The aforementioned increase
the stability interval as« increases, may be explicitly seen
Fig. 7. As already stated, this increase can be explained
by looking at the stability condition in Eq.~12!: the period
doubling occurs at the lower boundary, which decreases w
«, increasing the range of stability. This increase is seen
only for period-1, has determined analytically above, b
also for higher periods.

If one moves tonegativevalues of the coupling strength
the stability regions shrink, until they eventually disappe
Figure 8 shows stability regions for the same periodic orb
as in Fig. 7, but now as a function ofb and « for a51.5.
Clearly, the increasing of« to positive values expands th
boundaries of the region of bistability. The variation in th
full interval 21<«<1, incorporates both physical (0<«
<1) and non-physical solutions (21<«,0). For«50, the
periodic orbits are stable in a region comprehended betw
two period-doubling bifurcations, one for positiveb and an-
other for the symmetrical negative value~see, e.g., Fig. 2 in
Ref. @23#!.

One observes a shrinking of the stability regions when«
decreases towards negative values. In particular, fort51
trative

r

FIG. 7. ~Color online! The coupling parameter behaves as an expanding factor of the stability regions of periodic orbits. Illus
examples for periodic orbits of coherent states with periodst51, 2, 4, 8 and 16 for~a! «50, ~b! «50.1, and~c! «50.3. Other orbits with
higher periodt.16 are indicated in white while the black region represents the attractors6`. Appropriate initial conditions are chosen fo
each illustration and 1000 transients were used.
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coherent states completely disappear for«<21. Other
higher periods disappear also, but at lower coupl
strengths. For negative coupling strengths, Fig. 8 shows
that new stability ‘‘islands’’ are found, which do not exist fo
«>0. In all cases stability regions are symmetric aboub
50.

This concludes our description of the linear and homo
neous model. We now proceed to consider more reali
situations.

B. Nonlinear and inhomogeneous coupling

For nonlinear coupling updating,g(x)5 f (x), all sites are
first updated,xt→ f (xt), and then the coupling is considere
namely,

xt11~ i !5~12«! f „xt~ i !…1
«

2R (
j 51

R

WR, j@ f „xt~ i 1 j !…

1 f „xt~ i 2 j !…#. ~19!

Here, coherent states of any periodt are always given by the
corresponding period-t orbits of the uncoupled local ma
f (x), solutions ofX5 f (t)(X). In particular, for t51 we
obtain solutionsA, B, and C as before@see Eqs.~16a!–
~16c!#, but with different stability conditions.

When for all j one takesWR, j51, the eigenvalues of the
Jacobian matrix corresponding to Eq.~19! are

l15 f 8~X!, ~20a!

l,5 f 8~X!@12«1«h~R,L,, !#, ,52, . . . ,L.
~20b!

The eigenvaluel1 controlling the stability along the main
diagonal equals the eigenvalue of the fixed point of the m
f (x). The remaining eigenvaluesl, have eigenvectors in th

FIG. 8. ~Color online! The expansion of the stability region
when the coupling strength increases. Herea51.5. Only the region
0<«<1 corresponds to ‘‘physical’’ solutions~see the text!.
02620
g
so

-
ic

p

manifold transverse to the main diagonal, and their dep
dence on the interaction rangeR and on the diffusion« is
illustrated in Fig. 9~first row!.

Thus, on one hand, the coherent state is stable along
main diagonal if and only if the eigenvalue of the local cub
map has absolute value less than unity, with bifurcations
curring whenu f 8(x)u51. On the other hand, the stabilit
condition in the manifold transverse to the main diagona
ul,u,1 yielding, for all ,52, . . . ,L,

12
1

«
2

1

«ul1u
,h~R,L,, !,12

1

«
1

1

«ul1u
, ~21!

i.e., h(R,L,,) should be defined in a range centered at
21/« with amplitude inversely proportional to the eige
valuel1 along the main diagonal. Obviously, here we mu
have«Þ0, otherwise the case is degenerate, with allL ei-
genvalues being equal tol1 @see Eq.~20b!#, as expected.

Using a similar analysis as in Sec. IV A one finds that E
~21! is satisfied as long asul1u,1. Thus, for homogeneou
coupling with nonlinear updatings, period-t coherent states
are stable in the same range of parameters as the corresp
ing period-t orbit of the local mapf (x). Figure 7~a! illus-
trates the region of stability for the cubic map in Eq.~3!.

Now we proceed to the case of inhomogeneous coupl
This is a more realistic model since space and intersite
tance play an important role in the coupling between nei
bors. An interesting case, for which we are able to obt
exact analytical results, is that when the coupling stren
decreases linearly with the intersite distance, namely,

WR, j5
2~R112 j !

R11
. ~22!

In this case period-t coherent states are still thet-periodic
orbits of the uncoupled local map but their Jacobian matrix
more complicated. Similarly as in Sec. IV A@see Eq.~8!# we
find

l,5 f 8~X!F12«1
«

R (
j 51

R

cosS 2p~,21! j

L D
2

2«

R~R11! (
j 51

R

j cosS 2p~,21! j

L D G , ~23!

where,51, . . . ,L. For ,51 one findsl15(12«) f 8(X),
responsible for the stability along the main diagonal. Fo,
52, . . . ,L, the sums of cosines in Eq.~23! may be simpli-
fied ~see the Appendix! to

l,5 f 8~X!@11«z~R,L,, !#, ~24!

where
9-8
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z~R,L,, !5
12cos~2Ra!12 sina@~R11!sin~Ra!cos„~R11!a…2R sin„~2R11!a…2R~R11!sina#

R~R11!@12cos~2a!#
. ~25!

FIG. 9. Representative examples of the eigenvaluesl, of the manifold transverse to the main diagonal of phase space, as functio
the interaction rangeR and diffusion«. First row: homogeneous coupling, Eq.~20b!. Second row: inhomogeneous coupling, Eq.~24!. Here
L5100.
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Similarly to h(R,L,,), one obtains thatz(R,L,,) is de-
fined in the interval23/2,z(R,L,,),4. Therefore, the
corresponding transition thresholdsRt may be easily ob-
tained following the same steps above. The second row
Fig. 9 illustrates how the eigenvaluesl, in Eq. ~24! depend
on the interaction rangeR and on the diffusion«.

For anyWR, j , nonlinear updatings have always the eige
value along the main diagonal of phase space equal to
eigenvalue,f 8(X), of the uncoupled local cubic map. Fu
thermore, the eigenvalues of the Jacobian matrix of Eq.~19!
can be regarded, in general, as a Fourier sum where
weightsWR, j play the role of Fourier coefficients.

V. CONCLUSIONS

In this paper we investigated the dynamics of networks
maps with connectivities lying between the usual local c
pling, when the neighborhood is the smallest possible,
global coupling, when the neighborhood is maximal.

We find two different ways of inducing coherence: b
tuning the coupling strength or by enlarging the interact
range. One interesting finding observed when enlarging
interaction range is that coherent states and coherence
nomena in general, normally observed in networks of g
bally coupled maps, sets in for connectivities considera
smaller than the network size. In particular, it is possible
02620
in

-
he

he

f
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n
e

he-
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define a thresholdRt above which full synchronization is
always observed, indicating that beyond this threshold e
oscillator is not influenced by feedback from addition
neighbors.

We also obtained exact stability conditions for the em
gence of coherent states in several physical situations o
terest, namely, for homogeneous and inhomogeneous
pling under either linear or nonlinear updating. In the
situations, coherent states may lose stability through
period-doubling bifurcation which depends only on the co
pling strength, or by stabilization on a nonuniform state, d
pending not only on the coupling strength but also on
interaction range.

The minimal interaction rangeRt was determined analyti
cally and investigated as a function of nonlinearities and c
pling. The stability conditions derived are valid for any loc
dynamics, either mono or multistable. Of course, for chao
local dynamics, Jacobians vary in time, and theref
Lyapunov analysis must be used to ascertain the stabilit
homogeneous states.

This paper considered only networks of identical oscil
tors. For a number of applications@23#, it would be interest-
ing to extend the present study to models containing n
identical oscillators since local heterogeneity in the netw
allows modeling additional phenomena such as, e.g., hys
9-9
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LIND, CORTE-REAL, AND GALLAS PHYSICAL REVIEW E69, 026209 ~2004!
etic behavior. For nonidentical oscillators, it would also
interesting to study the ‘‘routes’’ to coherence reported h
for other types of synchronization, such as phase synchr
zation, and compare them with other studies, e.g., that
Osipov and Kurths@39#, where soft and hard transitions t
phase synchronization have been found in a lattice
coupled nonidentical circle maps. Since transitions betw
nonuniform and coherent states may be considered as
ticular cases of transitions between two different cluster
lutions, it would also be of great interest to investigate
generic stability of nonuniform states. We intend to inves
gate such questions in a subsequent publication.
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APPENDIX

In this appendix we simplify the sum of cosines used
Eqs. ~8! and ~23!. Calling a5p(,21)/L and representing
cosines by exponentials one finds

(
j 51

R

cos~2a j !5ReF (
j 51

R

e2a i j G
5ReF e2a i

12 e2a iR

12 e2a i G
5ReF ei (R11)a

sin~Ra!

sina G
5

sin~Ra!cos@~R11!a#

sina
. ~A1!

Dividing by R one obtains Eq.~11!. Similarly,

(
j 51

R

sin~2a j !5ImF (
j 51

R

e2a i j G5
sin~Ra!sin@~R11!a#

sina
.

~A2!

Since
ys
.
o

E

e
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(
j 51

R

j cos~2a j !

5cos~2a!12 cos~232a!1¯1R cos~R2a!

5(
j 51

R

cos~2a j !1 (
j 51

R21

cos@2a~ j 11!#

1¯1(
j 51

1

cos@2a~ j 1R21!#

5 (
k50

R21

(
j 51

R2k

cos@2a~ j 1k!#, ~A3!

repeating once again the simplifications done above we

(
k50

R21

(
j 51

R2k

cos@2a~ j 1k!#

5ReF (
k50

R21

(
j 51

R2k

e2a( j 1k) i G
5

sin~Ra!

sina
ReFeia(R11)S R

2
1

1

2 (
k50

R21

cos~2ak!

1 i
1

2 (
k50

R21

sin~2ak!D G
2

cos~Ra!

sina
ReFeia(R11)S i

R

2
1

1

2 (
k50

R21

sin~2ak!

2 i
1

2 (
k50

R21

cos~2ak!D G . ~A4!

Finally, substituting Eqs.~A1! and~A2! into Eq.~A4! above,
one obtains

(
j 51

R

j cos~2a j !5
2R sin@~2R11!a#sina211cos~2Ra!

2@12cos~2a!#
.

~A5!

This equation may also be obtained from the derivative
Eq. ~A2! with respect toa.
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