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Inducing coherence in networks of bistable maps by varying the interaction range
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Ordinarily, two different topologies have been used to model spatiotemporal chaos and to study complexity
in networks of maps: one where sites interact only with nearest neighdagrsthe standard diffusive coupling
and one where sites interact with all sites in the netw(gtlbal coupling. Here we investigate intermediate
regimes considering the interaction range as a free tunable parameter. The synchronization behavior normally
seen in globally coupled maps is found to set in for interaction ranges considerably smaller than the system
size. In addition, we analytically derive stability conditions for the onset of coherent ¢tallesynchroniza-
tion) from which the minimum interaction range needed to induce coherence in homogeneously coupled maps
can be determined. Such conditions are also obtained for inhomogeneous situations when the coupling strength
decreases linearly with the distance. The characteristic range for the onset of coherence is studied in detail as
a function of model parameters.
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[. INTRODUCTION second topology involves consideriggpbal coupling, when
each site receives simultaneous feedback from all other sites

Networks of coupled maps are popular nowadays tdn the network through a “mean field.”
model collective behavior of physical systems such as lasers In the same way as small-world networks explores middle
[1], Josephson junction array2], electric circuits[3], con-  ground between regular and random networks, an interesting
nected oscillatorg4], and many otherf5—8]. Until recently,  open question is to investigate how theeraction range
it was common to use eitheegular or random networks  affects collective behavior in dynamical systems and, in par-
even though, as is well known, these choices are not adicular, how the dynamics evolves as the topology changes
equate to describe all natural phenomena. An interesting walyom local to global coupling. These questions are important
to mitigate this shortcoming is to consider the dynamics ofin several applications, in particular in problems involving
small-world networks[9], namely regular networks with in- synchronization in gradient flows and in models of ocean
creasing amounts of disorder. These systems can be hightpnvection[21-23.
clustered, like regular lattices, yet have small characteristic The purpose of this paper is to investigate synchronization
path lengths, like random grapf@]. This type of network is phenomena in coupled map lattices considering the interac-
a hot topic of research today because it is useful to describgon range as a freely tunable control parameter. In general,
natural phenomena ranging from semiconductor laser arraytsvo main types of synchronization have been observed
[10], patterns in electronic circuifd1], damage spreading in [5-7]: full and partial synchronization. Oscillators are said to
Ising models[12], disease propagation and various epide-be fully synchronized when they all have identical ampli-
miological effects[13—16, and even in sociological phe- tudes at each time step, i.e., when they are all in the same
nomena such as rumor spreading and the interactions betate Fully synchronized states are also called uniform or
tween networks of acquaintancgls’—19. coherent states. Oscillators are said topletially synchro-

For regular networks, where space plays a very decisivaized when the system assumes a state composed by several
role, the standard way of investigating complexity is by con-domains, called clusters, each one characterized by a certain
sidering sets of oscillators described locally either with dif-number of adjacent oscillators evolving coherentfylly
ferential equations or with discrete mappin@9]. A very  synchronizeyl but forming altogether a nonuniform state.
popular model of regular network is tleeupled map lattice Synchronization effects have been reported gbobal
which, ordinarily, has been used with two different topolo- coupling [7,26—30, showing that it is possible to observe
gies so far. One topology originates from discretizations otransitions from partial to full synchronization and, in addi-
differential operators and involves sites which interact onlytion, coherent states were observed for a wide range of pa-
with nearest neighbors, either under the standard diffusiveameter values. Fdpcal coupling, additional nontrivial be-
coupling [8] or its diffusive-advective extensiof21]. The haviors are observed, e.g., spatiotemporal intermitt¢8y

pattern selectiof8,31], and traveling waveg21,22,31. Syn-
chronized states may be also found under local coupling

*URL: http://www.icat.fc.ul.pt/umc/plind [8,31] but only for very specific choices of parameters and/or
"Email address: jcr@fc.ul.pt initial conditions.
fURL: http:/iwww.if.ufrgs.br/~jgallas The differences observed in the dynamics under both
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types of coupling lead naturally to the question of how co-g(x)=f(x), which we call an updating withonlinearcou-

herence arises when tuning between local and global coysjing, sincef(x) is presumed to be a nonlinear functionxof
plings. For instance, is there some threshold of the interagy,e se periodic boundary conditions.

tion range'bey'ond which coherence is always observed? Forg(x)=x the sum in Eq(1) represents an average over
How large is this threshold? How does it depend on modeje states of th&R nearest neighbors, while far(x) = f(x)
parameters? In this paper we answer these questions, shoWe sum averages their corresponding local oscillations.
ing that it is possible to determine analytically stability con- Therefore, by considering separately both types of updatings,
ditions for the appearance of coherence states and, ffofye intend to investigate how these different “mean fields”
them, to derive interaction range thresholds for coherencgnfence the stability of coherent states. Below we show that
An interesting finding is that transitions from partial to full although the stability conditions are quite different, the cor-

synchronization occur not only when increasing the C(_)Up”ngresponding eigenmodes are qualitatively the sésee Fig. 9
strength as reported in the literature, but also when increagse|ow).

ing the range of interaction. Furthermore, we find that syn- 11 weightsWg ; in Eq. (1) allow one to vary the relative

chronization behaviors routinely ascribed to maximum i”terimportance of the sites composing the neighborhood and sat-

action range(i.e., to “globally” coupled maps are in fact isfy a normalization which, for later convenience, we write
observed to set in for significantly shorter interaction rangesgg

with the system remaining thereafter insensitive to further
increase in the number of neighbors.
We start in Sec. Il presenting the model used, which al- R
lows a separate consideration of both homogeneous and in- 2 Wgi=R. (2
homogeneous couplings and for two types of updating of =1
physical importance. In Sec. Ill we give an illustrative ex-

ample of a coherent state which appears when the mteractlo]qne simplest choicaVx ;=1 for all j provides a homoge-

range increases from qual coupling. With the help of .t.h'sneous coupling, by far the most frequently studied situation.
example we study numerically the dependence of transitions _ .
For R=1, Eqg. (1) reproduces the usual local coupling

between nonuniform and coherent states on the local bista- . ; N ) .
o . . . regime while forR=[(L—1)/2] it corresponds to the famil-
bility, on the coupling strength and on the lattice size. In Sec, . ; .

jar globally coupled maps. The interaction term in Ed).

IV we analyze coherent states in detail determining stability X . .
conditions as a function of the interaction range, for bothdoes not contain the amplitudegi) andx,(L/2) for L even,

types of updating and for homogeneous and inhomogeneo%ﬁfeﬁgxi\tgmrfgragigzr ?ég:ﬁge]lgg I[?_bflg /(;ogﬁlee(\j/enrwaps
couplings. Our conclusions are presented in Sec. V. ' ’ - y

similar to those observed when using the usual global cou-
pling model[26] and, thereforeR=[L—1]/2 indeed corre-
Il. SPATIALLY ISOTROPIC MODEL sponds to this limit. In general, the “interaction term” in Eq.

As mentioned above, our goal is to investigate the impactl): namely the collection of all terms having as coeffi-
of varying the interaction range in networks of coupled(?'em’ may be though physically as arising from a discretiza-

maps. To this end we introduce a convenient control paramt-Ion of the Laplacian operator averaged owsuccessive

eter R, the “interaction range,” specifying the number of Sp‘i‘}'a_l |E;:rgments._ idered bef =
neighbors responsible for the feedback in the network. For- ariable interaction ranges were considered before. For

mally, there are many possible ways to interpolate betweelf'Stance, Chatand Manneville[32], Zhilin et al. [33], and
local and global coupling. For simplicity we assume neigh_Carretero—Gonzlaz et al. [34] essentially use equations

bors to be symmetrically placed around each site. which may be transformed into Eq1) above with We
As usual, usings to represent the coupling strength, 0 = 1. While Baptista and Viang85] use a power-law coupling
<e<1,i=1,... L to represent spacd (is the total num- in the interaction term. These studies considered either non-
ber of oscillatory andt to represent a discrete time variable, linear[32,39 or linear[33,34 _coupllng updatings. Al t_hese
our spatially isotropic model reads works deal with local dynamics ruled by the quadratic map,
which is monostable, i.e. allows the presence of just one
e R stable attractor at finite distances.
Xes1(i)=(1—&)F (X (i) + == > Wri[g(x(i+])) ~ Motivated by recent applications of cubic maps in the
tea(D)=( ol 2R 121 Rl 801+ investigation of aspects of ocean convecti@8,3€|, here we
also consider cubic local dynamics ruled by the equation

+9(x(i—]))], D

where the interaction randgeis an integer number that may XHl:f(Xt)E_xt% ax+b, 3
vary between 1 and(L—1)/2], the integer part of I

—1)/2. In this expressionf(x) rules the local dynamics

while g(x) controls interactions among oscillators. Thesewherea andb are real parameters. This mapbistable(has
functions contain all nonlinearities of the model and, addi-two stable fixed poinisand, therefore, allows the investiga-
tionally, g(x) is used to define the type of updatingfx) tion of competition between two different phases in the net-
=X, which we call an updating withinear coupling, and work, as is done in Sec. lIl.
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FIG. 1. Upper row: time evolution of the oscillators in a lattice wliti 100 sites, starting from random initial conditions, homogeneous
coupling, linear updatinga= 1.5 andb=0. Three different situations are illustratgd) uncoupled regimeg=0), (b) local coupling R
=1 with £=0.3), and(c) coupling beyond the nearest neighbors ot 35 also fore =0.3. Lower row: stationary patterns reached after a
transient of 1000 time-steps. Dashed lines indicate admissible local amplifBes, . . , for each case.

ll. TWO “ROUTES” TO COHERENCE points A and B remain admissible amplitudes, additional
stable amplitudes, sa¥, W, Z, ... appear, as schematically

In this section we study the dynamics of the transmonindicated by dashed lines in the figure. Therefore, for short

from r_10nun|form to cohe_rent states as a function of the "Minteraction ranges configurations are still nonuniform but dis-
teraction rangeR, under linear updatingg(x)=x, and ho-

: _ : _ play localmultistability.
%%%%nzou?icc;?%ﬁ:'?ﬂ@e _ali.clz)ﬂr?\tle\:;tizg;])y\}vhee S"ggﬂﬁg Increasing the number of neighboil®>% 1) one observes
- app o ' a gradual decreasing of the number of clusters until the feed-
following parametersia=1.5 and —B<b=<p, where B8

- . back generated by theReneighbors is sufficiently strong to
Ex;/g/;gi’nf: that the cubic mdfq. (3)] supports two stable induce coherence, i.e., to force all sites towards shme

. . . amplitude, as illustrated by the amplitu@ein the last col-
The upper row of Fig. 1 shows the time evolution of 100 b y P

e . : umn of Fig. 1.
individual oscillators while the lower row shows the corre- g

. . . . : i Figure 2, obtained for the same parameters as Fig. 1, dis-
sponding spatial configuration after a transient of fithe g P 9

For clarity. Fia. 1 displ h \uti v 50 of th plays the fractionN of coherent states as a function of the
steps. orc arity, Fig. 1 disp ayst € evo ution only 50 of t erange, from a sample of 1000 realizations. From this figure
100 oscillators. For reference, in the first column one see

h lution in ti d for th led fivo basic facts emergéi) the transition from nonuniform to
the evolution in time and space for the uncoupled case (coherent states is rather “smooth”: the fraction of initial con-

=0), while the next two columns show the evolution when yiions \which converge towards coherence increases essen-
£=0.3, forR=1 andR=35.

Fore=0, when the oscillators are totally uncoupled, their : : :
time-evolution must converge towards one of the two pos- i
sible stable fixed points of Eq3). The specific fixed point 08 -
chosen by each oscillator depends the initial condition. The |
final spatial configuration of the lattice is composed by a o6 |
certain number of “clusters{adjacent oscillators with iden- -
tical amplitudes[24]), such number being typically of the 04
order of the lattice size. In other words, the uncoupled re-
gime is characterized by a nonuniforfnon fully synchro-
nized state displaying only two possible amplitudes
(bistable oscillators . . ‘ .

When the coupling is switched on, neighboring oscillators 0 10 20 R 30 40 50
start to synchronize, decreasing the number of clusters but
increasing their sizes. The second column in Fig. 1 illustrates G 2. Fraction of coherent states as a function of the interac-
thIS Situation fOI‘ the same 100 OSCi||atOI’S, thIS t|me Coupleqion rangeR over a Samp|e of 1000 sets of random initial condi-
locally (R=1). From the pattern on the bottom row, one tions, after a transient of fOtime-steps. Her@=1.5, b=0, &
observes that now there are more than just two admissible 0.3 andL=100, as in Fig. 1. Beyond the threshd® all oscil-
final amplitudes. In other words, although both stable fixedators evolve coherently, i.&N=1.

Multistability
—R ¢ ]

Coherence
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FIG. 3. FractiorN of coherent states as a function of the interaction rddgad(a) the coupling strength for b=0 and(b) the bistable
parameteb for e =0.3. The values of coherence threshBidare shown on the righsee the tejt The lattice was sampled 500 times and
the fraction of coherent states computed aftef tide steps. Hera= 1.5 andL = 100.

tially linearly with R (N«R), and(ii) beyond a characteristic this scenario can also be observed in discrete-time models,
thresholdR;, all oscillators have the same amplitude andbeing one of the two possible scenarios.

evolve coherently from then on. For the situation depicted in  Figure 3b) shows the behavior d®; when the bistability

Fig. 2 one ha®k;= 27, meaning that the minimum number of b varies. In the intervat-0.03<b<0.03, the thresholdr,
neighbors in the interaction term of E@.) to guarantee co- reaches a maximum &at=0, decreasing symmetrically with
herence is R,=54. |b|. In the rest of the intervat- B<b= g, not shown in Fig.

As is clear from Fig. 2, for any rang@= R, all coherence 3(b), one hasR,=1 due to the fact that one of the stable
effects usually ascribed to “global” couplinghamely toR  fixed points of Eq.(3) has a much larger basin of attraction
=[(L—1)/2]) are already observed. In other words, beyondthan the other.

R; oscillators are totally insensitive to additional feedback The dependence d®; as a function of both bistability
from distant neighbors. In particuld®, may be considerably and diffusione is summarized in Fig. 4, for the same values
shorter than the lattice size. Notice that it is possible to oba=1.5 andL=100 as before. The symmetry arouhe-0
serve coherent states f&<R;. However, the threshol®&,; reflects the symmetry of the basin of the fixed points of the
is defined here as the range beyond which a coherent statelacal cubic map(see Fig. 2 of Ref[23]). For e<0.2, one
reached for essentiallgny choice of initial conditions. In  observes thaR; is the lattice size_ itself (R=L/2), while
other words, forR>R, the basin of attraction of coherent
states essentially fills the entire space of the initial conditions
available to the system.

The R, dependence on the coupling strengtts shown in
the upper row of Fig. 3, where the fraction of coherent states
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is given on the left as a function of the interaction range and R; Wm; R 0.02
the coupling strength. The corresponding valuesRpfare w&#}iﬁ%}}i’zﬁﬁ,‘}?}}}}}ﬁ_ '
shown on the right. As one sees, the threstR|dlecreases %g S R R i) /001
with the coupling strength and no coherent states are ob- ""%ﬁﬁ%ﬁﬁﬁﬁ’? 0
served, neither for small rangeR=<5, nor for small cou- 0.25 £ 7 0.01
pling strengthsg <0.2. = /002

From Fig. 3 one clearly sees that it is possible to induce € 0.4 57003

coherence by two different ways: by increasing the coupling

strength or by increasing the interaction range. The first situ- F|G. 4. The threshol®, as a function ob ande. The cuts at
ation was previously observed in an interesting paper byy=0 ande=0.3 are shown in Figs.(8 and 3b), respectively.
Zanette[37] while studying a set of coupled differential Herea=1.5 andL=100 and for each pairb(s) samples of 200
equations containing a cubic nonlinearity. We now show thatnitial conditions were used.
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R¢ ro , , ‘ We obtain two different stability conditions, yielding two
. b=0.003 § different scenarios for coherent states to lose their stability:
100 | el Lo ] through a period-doubling bifurcation or through a metamor-
° phosis with the stabilization on a nonuniform state. Further-
40 | ° 1 4 . . . . .
. b=0.005 A more, we show that the period-doubling bifurcation is a
80 [ 20 e e //// ] function of the coupling strength only, while the transition to
%00 260 360 j)p//{ =03 nonuniform states depends also on the interaction range. The
60 | a ] stability conditions obtained are very general, remaining
/{// valid for anylocal dynamics, although they are applied here
40 L e=04 B ) to the specific cubic map of Eg3).
/// e -
ol U — =07, A. Linear and homogeneous coupling
»—»;j:‘,:, I For homogeneous coupling and linear updating €.
0 M ‘ €=0.9 reduces to
100 200 L 300 400 . R
FIG. 5. The threshol®; as a function of the lattice siZe for Xera(1)=(1=e)f(x (1)) + 2R Zl Dei )+ =)
five different coupling strengths, all fdr=0. The inset show&; (4)

for b=0.003 andb=0.005, both fore =0.3. Results from simula-

tions are represented by symbols while the corresponding linear fitSoherent states are obtained from E4). when substituting
are plotted with lines, which have correlation coefficients alwaysy, (i) by a spatially constant amplitude, sdy. For coherent
greater than 0.993. Hera= 1.5 and a transient of 50 000 time steps states with period 1, one has only one vakie=X for all

was used for a sample of 50 sets of initial condition. time steps, and the stability conditions are determined from

the Jacobian matrix of Eq4), namely,
for e=0.7 we find that coherence is already observed for any a4 y

number of neighborsR;=1). X 1(i)]
The influence of the lattice size is displayed in Fig. 5, J=

whereR; is shown as a function df, for several values of Ix()]

the coupling strength, namely=0.3, 0.4, 0.5, 0.7, and 0.9, € P € P

and for b=0. From this figure one clearly sees that the  =circ (1—8)f’,ﬁ, g0 05 e ]
thresholdR; increases linearly witt., while the slopeR,/L

decreases witls. Our simulations have shown that the lin- )

earity betweerR, and the lattice size holds only in a neigh- o ) )
borhood ofb=0. An illustration of this fact may be seen in Where “circ” indicates thecirculant form [38] of the matrix
the inset of Fig. 5 where, apart from the different slopes, & andi,j=1,... L andf’=f"(X) is the first derivative of
linear variation seems to exist far=0.003, but not fob ~ f(X) computed at the amplitudg of the coherent state. The
—0.005. Once again, the reason for this behavior is thagigenvalues of are[38]
outside theo=0 neighborhood, one of the fixed points of the

R
local cubic map has a much larger basin of attraction than the A Ner & i L—j
other one and, therefore, almost all sites converge always to Ae=(1=2)F () + 2R le (wg t e, (6)
the same amplitude even for very short interaction ranges.
So far we have focused in the parameters leading to coyhere¢=1, ... L, and the coefficientss,, represent the

herent states without worrying about which precise ampli{_th roots of unity,
tudes characterize these states. Since multistability is obvi-
ously present in the cubic map, being in fact a feature that we 2w(€—-1)
want to explore in later applications, in the next section we we,LZGXF{ I f)
study specific coherent states supported by the model in Eq.
(1) and investigate their stability. We now analyze the stability of a period-1 coherent s¥te
evaluatingall eigenvalues\, in three steps.

IV. STABILITY OF COHERENT STATES First, substituting Eq(7) into Eq.(6), one obtains a more

onvenient expression

)

In this section we consider homogeneous and inhomoge(2
neous coupling for both types of updatingg,x)=x and R .
g(x)=f(x), deducing stability conditions for coherent M=(1—s)f’(X)+i > COi{Zw((f—l)J)_ ®
states, reverting the procedure previously used: instead of R L
starting from a random nonuniform state and studying the
transition to coherence, we now analytically determine thd~or { =1 the eigenvalue does not dependRin
coherent states, and investigate how they lose stability when
varying parameters. AN=(1-e)f'(X)+e, 9

i=1
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while for all other values off, 2<{<L, the eigenvalues
reduce to

(I) Whené_>1 or £, <—1, coherent states are always
unstable, since Eq13) is never satisfied. However, this situ-
ation never occurs because E#fj2) must be obeyed.

Ne=(1—g)f" (X)+en(R,L,¢), (10 (I) Whené_< —1 and¢, <1, coherent states are stable
o as long as—1<7(R,L,¢)<¢,(a,b,e). This situation also
where5(R,L,€) is given by(see the Appendix never occurs because Hd2) must be obeyed.
. (') When é_<—1 and&é,.>1, coherent states are al-
A(RL.€)= % S'n(RO‘)COS{(R“Ll)“], (1)  Ways stable since Eq13) is always satisfied. Notice that

sina é_.<—1 and £,>1 is equivalent to saying that-1

<f’(X)<1. Thus, in the region where the fixed points of the

wherea=({—1)m/L. ~local dynamicsf(x) are stable, coherent states will be stable
Second, as is well knowf25], coherent states always lie regardless of the lattice size and interaction range.

on the main diagonal of phase-space being, therefore, pro- (IV) Whené_>—1 and¢, >1, coherent states are stable

portional to thel.-dimensional vector (1 ..,1).This vector a5 Jong ast_(a,b,e)<7(R,L,€)<1. This situation occurs

is the only eigenvector of the Jacobian with eigenvalye  for —(1+¢)/(1—¢)<f'(X)<—1. Thus, there is a set of

Thus, assuming that all the other eigenvalues have magnjjyes R,L,¢) satisfying

tudes less than 1, the coherent state with peredl is

stable if and only ifi\;|<1, yielding

1 1
1- =) (X)- =,
& &

n(R,L,€)>

(15

1+¢
- —<f'(X)<1.

1-¢ (12

for which the coherent states are stable, and the threstold

is the lowest value oR satisfying Eq.(15) for all possible

The upper limit in Eq(12) corresponds to the tangent bifur- values of¢. Notice that, since-1<#=<1, it is only neces-

cation of the local map, while the lower limit corresponds tosary to consider—1/(1—¢)<f’'(X)<—1, because for the

a period-doubling bifurcation, in which a stable coherentrest of the interval—(1+¢)/(1—¢&)<f'(X)<-1/(1—¢),

state of periodr=2 appears. Whea=0 Eq.(12) reduces to the condition of Eq(15) does not hold for any interaction

the usual stability condition of the local maff,(X)|<1. range.

Whene+#0, Eq.(12) shows that the size of the interval of =~ Summarizing, for a given set of parameteash(,e,L ), it

stability increases witlz. is possible to compute analytically the thresh&®dwhere
Third, the eigenvalues other than belong to the mani- coherence appears. All these considerations are general, in-

fold transverse to the main diagonal. Thus, the stability condependently of the local dynamid$x). Now we apply the

dition |\ ,|<1 must also hold for alt=2, ... L, yielding  above results to the cubic map, EG).

Fore=1, a brief analysis shows that coherent states may

¢ (a,b,e)<n(R,L,€)<é.(a,b,e), (13 only have periodr=1 because of the updating. Fer 1,
period-1 coherent states are the fixed points of the local cu-
where bic map, solutions oK = f(X), namely,
1 1 0
gr(a,b,s)z(l——)f’(X)i—. (14) A=p+—, (163
€ € p
When 5(R,L,{) crosses one of the two boundarigs, or _ )0
¢_, the coherent states lose stability and a nonuniform state B=wpt o2, (160
appears.
In short, when Eq.(13) is satisfied, period-1 coherent 5 0
states are stable in the range defined by @) and bifur- C=wp+ “’;’ (169

cate to a period-2 coherent state when crossing the lower
boundary. On the other hand, as long as @Q) holds, the where §=(a—1)/3, p is anyone of the cubic roots dif/2
coherent states may only lose stability by “bifurcating” to a + \/5 with D being the discriminant,

nonuniform state whem(R,L,€) crosses one of the bound- ) 5
b
o-(2]"

, 17

1-a

3

ariesé_ or &, in Eq. (13).
Next, we will assume that the condition in E42) holds,
and study the loss of synchronization with the emergence of

a nonuniform state, occurring whem(R,L,£)=¢&, or
n(R,L,€)=¢&_. It is important to notice thaty(R,L,¢) is
defined in the interval —1,1], regardless the lattice site

andw=(—1+i+/3)/2.
Coherent states must haveal values and, therefore, if
D>0 then onlyA is real whileB andC are complex conju-

Therefore, we need to investigate now all possible intervalgate, implying existence of only one coherent stateD If

generated by the conditiong.|>1 and |£.]|<1. Since

<0, then all three solutions are real. =0 one finds two

& _>—1 and&, <1 yields no solutions, altogether there are different coherent state® and B=C. Figure &a) shows

four cases to be investigated.

these three region§ <0, D=0, andD >0, as functions of
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FIG. 6. Stability regions of coherent states in networks of coupled bistable if@Bsxed points of the cubic map, E¢B), defining the
three possible coherent statés,B andC, given in Eq.(16). Solid lineD=0 separates two region§) D>0 with only one coherent state
A and(ii) D<0 with three coherent states, B andC. The solid line also indicates the boundary where tangent bifurcation occuBsafua
C. For A the tangent bifurcation occurs only at the cusph)=(1,0). Dotted and dashed lines represent the lines where period-doubling
bifurcation occurs foA andC, respectively. For the coherent st&®@o period doubling occurs, i.€f.;(X) # — 1 always, as can be seen from
(b) wheref’(X) is plotted forX=A, B, andC, whenever they are real.

a andb. The degenerate cage=0 (i.e., D=0 andb=0), strengthsg=0, 0.1 and 0.3. The aforementioned increase of
not included in Eq(16), yieldsA=B=C=0, corresponding the stability interval ag increases, may be explicitly seen in
to a cusp atd,b)=(1,0). The cusp can be easily observed inFig. 7. As already stated, this increase can be explained just
Fig. 6(b), where the three-dimensional plot shows the valuedy looking at the stability condition in Eq12): the period
of ' of each coherent state, whenever real. Figue élso  doubling occurs at the lower boundary, which decreases with
shows the bifurcations lines whele |=1 for each coherent €, increasing the range of stability. This increase is seen not
state. only for period-1, has determined analytically above, but
So far, we determined period-1 coherent states. To coralso for higher periods.
clude this section we now study higher period-doubling as- If one moves tanegativevalues of the coupling strength,
suming, as before, that E¢L3) holds. the stability regions shrink, until they eventually disappear.
When Eq.(13) holds, coherent states are defined by aFigure 8 shows stability regions for the same periodic orbits
period- orbit, {Xy, ... X,}. Substituting these amplitudes as in Fig. 7, but now as a function dfande for a=1.5.
into Eq. (4) we obtain a one-dimensional map for coherentClearly, the increasing of to positive values expands the
states, namely, boundaries of the region of bistability. The variation in the
full interval —1<e<1, incorporates both physical {0
Xis1=—(1—&)X3+[e(1—a)+a]X+(1—¢)b, (18)  <1) and non-physical solutions{1<e<0). Fore=0, the
periodic orbits are stable in a region comprehended between

with t=1, ... ,7. Equation(18) clearly shows that the am- two period-doubling bifurcations, one for positibeand an-
plitudes composing periodic orbits of coherent states are abther for the symmetrical negative val(gee, e.g., Fig. 2 in
ways independent of the interaction range. Ref.[23]).

Figure 7 shows stability domains in parameter space for One observes a shrinking of the stability regions wien
coherent states observed for three different couplinglecreases towards negative values. In particular,rfed

3.0

-1.0

-1.0 b 1.0 -10 b 1.0 -1.0 b 1.0

FIG. 7. (Color online The coupling parameter behaves as an expanding factor of the stability regions of periodic orbits. lllustrative
examples for periodic orbits of coherent states with periods, 2, 4, 8 and 16 fofa) =0, (b) £=0.1, and(c) £=0.3. Other orbits with
higher periodr>16 are indicated in white while the black region represents the attrattersAppropriate initial conditions are chosen for
each illustration and 1000 transients were used.
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manifold transverse to the main diagonal, and their depen-
dence on the interaction rangeand on the diffusiore is
illustrated in Fig. 9(first row).

Thus, on one hand, the coherent state is stable along the
main diagonal if and only if the eigenvalue of the local cubic
map has absolute value less than unity, with bifurcations oc-
curring when|f’(x)|=1. On the other hand, the stability
condition in the manifold transverse to the main diagonal is
IN¢|<1 yielding, forall¢=2,... L,

1 1
~ < n(RLO<L-—+

T o @)

1.0 8|)\1|7

-1.0 b 1.0

FIG. 8. (Color online The expansion of the stability regions
when the coupling strength increases. Hetel.5. Only the region
O0=<e=<1 corresponds to “physical” solutionsee the text

i.e., n(R,L,€¢) should be defined in a range centered at 1
—1/e with amplitude inversely proportional to the eigen-
value\; along the main diagonal. Obviously, here we must
havee #0, otherwise the case is degenerate, withLadi-

coherent states completely disappear to=—1. Other genvalues being equal 1o, [see Eq(20D)], as expected.

higher periods disappear also, but at lower coupling Using a similar analysis as in Sec. IV A one finds that Eq.

strengths. For negative coupling strengths, Fig. 8 shows aIs@l) is satisfied as long &3,/ <1. Thus, for homogeneous

that new stability “islands” are found, which do not exist for coupling W_ith nonlinear updatings, periadeoherent states
€=0. In all cases stability regions are symmetric abbut are staple n thg same range of paramete.rs as the gorrespond-
~0 ing period+ orbit of the local mapf(x). Figure Ta) illus-

trates the region of stability for the cubic map in E8).

Now we proceed to the case of inhomogeneous coupling.

is is a more realistic model since space and intersite dis-

tance play an important role in the coupling between neigh-

bors. An interesting case, for which we are able to obtain

exact analytical results, is that when the coupling strength
For nonlinear coupling updating(x)=f(x), all sites are  decreases linearly with the intersite distance, namely,

first updatedx;— f(x;), and then the coupling is considered,

namely,

This concludes our description of the linear and homoge
neous model. We now proceed to consider more realistici_h
situations.

B. Nonlinear and inhomogeneous coupling

2(R+1—j)
] WR'J_T' (22
&
Xira(i)= (1= &) F (D) + 5 2, Wey[f(xi(i+])
=1 In this case period- coherent states are still theperiodic
o orbits of the uncoupled local map but their Jacobian matrix is
+ (i =]))]. (19 more complicated. Similarly as in Sec. IV[aee Eq(8)] we
find
Here, coherent states of any periodre always given by the
corresponding period- orbits of the uncoupled local map
f(x), solutions of X=f(7(X). In particular, forr=1 we Ne=F'(X)
obtain solutionsA, B, and C as before[see Egs.(163— ¢
(160], but with different stability conditions.
When for allj one takesNg ;=1, the eigenvalues of the 26 R {2,”.(6_1)1' ” 03
— j |, 23

277(1?—1)1)

R
&
1_8+§j21 cos( -

Jacobian matrix corresponding to E49) are

A =11(X), (208 \vhere¢=1,... L. For¢=1 one finds\;=(1—¢)f’(X),

responsible for the stability along the main diagonal. For
Yy _ _ =2,... L, the sums of cosines in ER3) may be simpli-
Ne=F"(X)[1—-e+ RL,0)], €=2,...L. .
¢ (X[L=e+en )] (20b) fied (see the Appendijxto

The eigenvalue\; controlling the stability along the main Ne=F"(X)[1+el(R,L,¢)], (29
diagonal equals the eigenvalue of the fixed point of the map
f(x). The remaining eigenvalues have eigenvectors in the where
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:2 l:IO l:L/2

FIG. 9. Representative examples of the eigenvalyesf the manifold transverse to the main diagonal of phase space, as functions of
the interaction rang® and diffusions. First row: homogeneous coupling, E§Ob). Second row: inhomogeneous coupling, E2f}). Here
L=100.

1-cog2Ra)+2 sina[(R+1)sin(Ra)cog(R+1)a)—Rsin((2R+1)a)—R(R+1)sina]

{RL,O= R(R+1)[1—cog2a)] 2

Similarly to »(R,L,£), one obtains thatf(R,L,¢) is de- define a thresholdr; above which full synchronization is
fined in the interval—3/2<{(R,L,{)<4. Therefore, the always observed, indicating that beyond this threshold each
corresponding transition threshold® may be easily ob- oscillator is not influenced by feedback from additional
tained following the same steps above. The second row ineighbors.

Fig. 9 illustrates how the eigenvalugs in Eq. (24) depend We also obtained exact stability conditions for the emer-
on the interaction rangR and on the diffusiore. gence of coherent states in several physical situations of in-

For anyWg j, nonlinear updatings have always the eigen-terest, namely, for homogeneous and inhomogeneous cou-
value along the main diagonal of phase space equal to thgiing under either linear or nonlinear updating. In these
eigenvaluef'(X), of the uncoupled local cubic map. Fur- sjtyations, coherent states may lose stability through a
thermore, the eigenvalues of the Jacobian matrix of(E§.  period-doubling bifurcation which depends only on the cou-
can be regarded, in general, as a Fourier sum where g, strength, or by stabilization on a nonuniform state, de-
weightsWe ; play the role of Fourier coefficients. pending not only on the coupling strength but also on the

interaction range.
V. CONCLUSIONS The minimal interaction rang®, was determined analyti-

In this paper we investigated the dynamics of networks of:a}lly and inves@igated asa functiqn of nonlingarities and cou-
maps with connectivities lying between the usual local couPling. The stability conditions derived are valid for any local
p"ng, when the neighborhood is the smallest possib]e, andynamics, either mono or multistable. Of course, for chaotic
global coupling, when the neighborhood is maximal. local dynamics, Jacobians vary in time, and therefore

We find two different ways of inducing coherence: by Lyapunov analysis must be used to ascertain the stability of
tuning the coupling strength or by enlarging the interactionhomogeneous states.
range. One interesting finding observed when enlarging the This paper considered only networks of identical oscilla-
interaction range is that coherent states and coherence phers. For a number of applicatiof&3], it would be interest-
nomena in general, normally observed in networks of gloing to extend the present study to models containing non-
bally coupled maps, sets in for connectivities considerablyidentical oscillators since local heterogeneity in the network
smaller than the network size. In particular, it is possible toallows modeling additional phenomena such as, e.g., hyster-
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etic behavior. For nonidentical oscillators, it would also be
interesting to study the “routes” to coherence reported here
for other types of synchronization, such as phase synchroni-
zation, and compare them with other studies, e.g., that by
Osipov and Kurthg39], where soft and hard transitions to
phase synchronization have been found in a lattice of
coupled nonidentical circle maps. Since transitions between
nonuniform and coherent states may be considered as par-
ticular cases of transitions between two different cluster so-
lutions, it would also be of great interest to investigate the
generic stability of nonuniform states. We intend to investi-
gate such questions in a subsequent publication.
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APPENDIX

In this appendix we simplify the sum of cosines used in
Egs. (8) and (23). Calling = w(¢—1)/L and representing

PHYSICAL REVIEW E69, 026209 (2004

R

E cog2aj)

=cos{2a)+2 co§2X2a)+--+RcogR2a)
R-1

—E cog2aj)+ E co§2a(j+1)]

1
+---+_21 co§2a(j+R—-1)]
=

R—-1 R—k

=> > cog2a(j+k)], (A3)
k=0 j=1

repeating once again the simplifications done above we find

R-1 R—k

> > cog2a(j+k)]
k=0 j=1

R—1 R—k
-R E 2 el +h)i
k=0 =1

. R 1
i i i sin(R . R
cosines by exponentials one finds _ n( @) Re{e’“(R“) o3 2 cog2ak)
sina
R R Ro1
. aij 1
jzl cog2aj) Re_jzl e } vz > sin(2ak)”
[ 11— eZ“iR] qR1
=Rg Y ——— _ cogRa) . R
« o a(R+1)
_ 1— g2 o E{e' >t5 Z sin(2ak)
:Re-ei(RH)aSin(Ra) 1 Rl
sina —|— 2 cos{Zak)” (A4)
S|n(Ra)cos{(R+1)a]
sina (A1) Finally, substituting Eqs.A1) and(A2) into Eq.(A4) above,

one obtains

Dividing by R one obtains Eq(11). Similarly,

py)

This equation may also be obtained from the derivative of
Eq. (A2) with respect toa.

R A sin(Ra)sinf (R+1)a] <
J-Zl Sln(2aj)= m JZ e2 J} sina
(A2)
Since

2

cog2aj)=

2RsiM (2R+1)a]sina—1+cog2Ra)
2[1-coq2a)]

(A5)
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