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Correlation decay and partial coherence in nonlinear wave interactions
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In the present analysis we study the broad-band triplet interaction in regimes of large amplitudes. Linear
response theories associated with nonlinear arguments are used to show that even though coherence of high-
frequency modes is lost as one first encounters chaotic regimes, it can be restored as field amplitudes grow
further. We discuss implications of the feature for fixed-phase interactions.
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[. INTRODUCTION second order time derivatives acting on the appropriate fields
can be approximately replaced according to the known slow
Nonlinear wave dynamics can be frequently modeled bymodulational rule ﬁt2~i2iw&t, i2=—1. This means a
the interaction of a few monochromatic modésg. In many  much slower process than the one scaled by the carrier fre-
cases the dynamics involves three higher-amplitude modeguencyw and it establishes, after all, what we understand by
in which case one refers to the model as the triplet waveesonant interaction. Now since the typical frequencies of
interaction. Triplet interaction is one of the most significantamplitude modulations tend to increase with field intensity, it
forms of the wave interaction, presenting the most prominenis to be expected that the slow modulational approach out-
nonlinear features in wave systems. It comes in several vetined above ceases to be valid at some point. In the vicinity
sions, and the one we are about to examine here is the conf the point where the modulational approach breaks down
servative regime, where sources and dissipation are absent.chaos is likely to appear due to resonance overlaps involving
large variety of situations can be described by the conservdinear and nonlinear frequencies, and when chaos is present,
tive triplet interaction, for instance decay instabilities inthe coherence tends to diminish. This is what we see as we
laser-plasma interactions, three-mode interaction in opticdncrease the field intensities of the model analyzed in Ref.
and others. [5]. But if one increases the field intensities further, the co-
The classic pure triplet interaction has been shown to béerence is partially recovered. This result was barely noticed
integrable by explicit quadrature methods, and this happenis Ref. [5] and we explore the feature more deeply here
so because one defines the classic model in terms of resonayiven the current interest in the generation of coherent radia-
modes that can be well described with first order time detion [6]. With use of linear response methods conveniently
rivatives only. The modes just keep exchanging energwssociated with nonlinear techniques we show that partially
among themselves in a very regular and periodic fashion. Aoherent states emerge from the interaction with some waves
question analyzed by a number of researchers concerns tipeeserving coherence and some not. The general rule is that
behavior of the system when each of the three single modasherence of higher-frequency waves is harder to break-
of the classic picture is replaced with a narrow comb ofdown, so one can imagine a situation where a laser packet
many mode$1-3]. One relevant result is that the dynamics traverses a nonlinear medium: even if the medium is heavily
can still preserve its simplicity if the mode amplitudes areaffected by the chaotic interaction, the laser may still be
large enough, such that they can create a strong mean fietibscribed in terms of fixed-phase modes, which is a desirable
trapping all modes through a phase-locking mechani3n  feature. All these points can be observed in the context of the
In this case the various modes in each comb behave in Zakharov equations, for instance. These equations are known
coherent way, i.e., deviating only slightly from their en- as one of the best models to describe the interaction of high-
semble average. On the other hand, if the field amplitudeand low-frequency modes in a variety of nonlinear environ-
are small, phase locking is absent and coherence is lost. iment and they clearly show the transition from modulational
this case the interaction is best described with the aid ofo chaotic regimef7—9|. Even in more complicated settings,
random phase approximations. knowledge of the coherent/incoherent behavior of Zakharov
More recent papers analyze the problem from a yet diftriplets allows one to determine whether or not modulational
ferent perspectivé4,5]. The issue addressed was the usagénstabilities are present; it is known, for instance, that inco-
of first order time derivatives to model the interaction. Whenherence inhibits modulational instabiliti€%0,11].
each comb has its dominant carrier frequenrgy eventual The paper is organized as follows. In Sec. Il we present
the model and handle the governing equations to extract in-
formation on the transition from coherent to partially inco-

*Electronic address: rizzato@if.ufrgs.br herent states; in Sec. Ill simulations are performed to con-
"Electronic address: pakter@if.ufrgs.br firm the analytical estimates; and in Sec. IV we draw our
*Electronic address: lopes@fisica.ufpr.br final conclusions.
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Il. THE MODEL =w,, and recursively s,qn=0wyq8Spqn-1 With S5q0

In the case of the triplet interaction one has three combs, 98pq and Spn=Spqn, ONE arrives at the following infinite

of fieldsa,q, p=1,2,3 with many modes each,(N—1)/2 Cumulant hierarchy:
=q=<(N—1)/2. We takeN as odd to simplify mode count-
ing. This way we have a central mode=0 surrounded by a
symmetric distribution atj>>0 andq<0. Our results are of
course independent of this particular choice XorThe inter-
action can be modeled by the following $&t-3,5:

iX1=51X1+Sl 1+ N X2 X3,
181 0= 1S ntSpnert ¥TIX, (4)

iX2:62X2+ Sy 1+N Xl X; y

B 1 e (n+1)
|a1q=w1qalq+N Z" pqr83qy (1) IS2n=w2SntSonr1t Yy X, 5
)"(3+53X3: _53 1_N Xl X; y
.. 1 * — +1
'azq:w2qa2q+ N ,E" alq’a3q"1 (2) §3n+ w3S3 = —S3 n+1_’y(3n )Xs (6)
q'.q
, for n=1,2,34..., etc. yg.‘“)z[ﬁwpqﬁ:]’l‘ﬁwpq, where
A = — ped _EE aat 3 “ §:"calculates the fluctuation of everything on its right
34~ ¥30%q N ThaT side—y{P=[6w,q0:16wpq= (Swpg)?, for instance. This

way of displaying the multitude of equations we have to deal

As explained in Ref[1], Egs.(1)—(3) are obtained when one with—.in terms of averages and qucFuations of the pertinent
writes down the appropriate Fourier analyzed governin uantities—is equivalent to the projector method proposed
equations and averages over large groups of modes in ea8) Martins and Mendoye some time ag¢2]. The present
comb. The assumption is that individual modes in each com@!térnative is more adequate for the purposes we have in
cannot be well resolved spatially, but time is not restricted™Mind, since it introduces aI_I the flqctuatlon_s in terms of linear
and the full difference in frequencies is still contemplated byProcesses governed by differential equations. Let us sketch
the linear terms of the equations. This is the appropriate pro¥hat can be expected in regimes of relatively high-power
cedure if one wishes to study the transition from narrowWVaves, for instance=10; for further purposes, note that
combs to the strictly pure three-mode interaction. The first<p~p/N. Fields of this order of magnitude look big, but in
two combs describe the amplitude of high-frequency fielddact result from multiplying factors involving the ion-to-

like lasers or Langmuir plasma waves, and the latter describ@l€ctron mass ratio in the Zakharov equations and can be
full low-frequency fields. adequately described with the nonlinearities included in the

original model(1)—(3) as explained in Ref10]. As a matter
of fact our normalized fielp can be written in the form
p?=(3m;/4m,)W, whereW denotes the ratio of electric to
thermal energyWw= eOEShysicaMn kg Te with n as the par-
Yicle density,m; . as the ion(electron masskg as the Bolt-
zman constant, and, as the electron temperature. For
=10 andm; /mg~10? this yieldsW~0.1, which falls well

12 _
@pq=Kpgq:  Kpg=KpT A,

whereA, is the spectral distance of contiguous modes in an
comb andA=(N—-1)A,/2 is the half width of the combs
which we assume to be the same. It is convenient to intro

ducexqa;q=p. WhenN=1, we retrieve the pure case ana- j,qiye the validity region of the Zakharov equations. Consid-

lyzed n Refs.[4] anq 5] W.e c'all theN: 1 case the syn- ering typical physical parameters of nonrelativistic beam ex-
chronized manifold since this situation would represent th;g1

. erimentsn~10° cm 3, T.~1 eV, m;/m,=10° for argon
happens should all modes oscillate coherently. What h ’ Lo e -
been found in those two cited papers is thapitl, the ydrogen and helium have been used for these experiments

) . ; . ! [ the electric field of injected L i
dynamics of the synchronized manifold is chaotic due to thezshw§ D’:Tg V/(?me eocngch;es din?jeg‘gjef gdl Oarmgvn;zlrlav;/ggfs
; physica ’ .

[‘10,12. Returning to our arguments, as a first step one as-
sumes initially coherent modes with small values for the
various fluctuations,, ,. Then consider the first equations of
sets(4) and (5) redefining;=X;e~" “i', j=1,2, such that
one can write

controlling a;. As a matter of fact, we observe here that the
Lyapunov exponent- scales likeo~In p in the range ¥p
<100. Then, initial studies published in RE5] show that in
these chaotic cases coherence is lost if wfetl andA+#0

for p~1—which is expected in view of the presence of cha-
otic activity in the synchronized manifold—but is at least A - G i3 & uk i o
partially recovered ip is further increased tp>1, a some- iX;=NX;Xze' “12, iX;=NX; Xze'“1z,  (7)

what unexpected behavior. Due to its physical interest, this L .
higher-intensity range is the subject of analysis of the preserp12= 1~ @z. Equations(7) suggest that variablex; and
paper. To see what happens we now introduce our formalisiX, are oscillating on a fast time scale, given the magnitude
in terms of the concepts of average and fluctuation for arof the time derivatives when the fields are large. Equations
arbitrary quantityg,q within each combg,=249,4/N and  (6) on its turn suggest thaX; oscillates on a much slower
09pq=09pq—Upgq- Then if one definesa,;=X, and w,, time scale essentially determined by the average frequency
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Jwg; even if the driverX; X5 contains high-frequency com- 2 (= )

ponents, we expect that the main spectral contribution comes g(t)= ;fo Img(w)sin(wt)dw. 9)
from ponderomotive forces at low frequencies of the order of

Jws. The slowness oK allows us to see Eq(7) as an

adiabatic process in which botk; and X, oscillate with a The collection of all poles can be replaced with a continuous
slowly varying frequency();~p, which is large. Fluctua-

. . . . + o0 _ . .
tions s; 1, if now reconsidered, can be treated similarly andg:ztrzl?rlg;%r;nir;\gjriorlr{gtioar)ll::Ig(#mu;;)glﬁ% \i/lhtlﬁgslsh?w o
shown to scale lkes; 1 /vy ™ ~(Vy" /Q)X;, which is 200 S0 distribution mg(w)? We adopt the simple’st op-
much smaller thaiX; simply because the width of the packet o \/—(’27< ) —

is small andQ), is large. Note that we divide by yy in  1on_here and takelmg(w)=K if —yy5'<o~o;
order to compensate for thiw factor contained in the defi- <V 7¥) with K as a constant, anting(w)=0 otherwise.
nition of s; in general, if|s/\y|~|X| fluctuations are signifi- This form does not include higher-order correctioy n
cative and whens/ \/y|<|X| they are not; we shall take the =3, but is analytically treatable and does observe the crucial
quantity |s,/( /y(pZFXp” as a measure of coherence for fact that one has large number of resonances acting upon the
each comb. As an alternative view on the meaning ofystem. If one refines the spectral description with higher-
s/(y/yX), consider the equation fafa from Eq.(1) neglect-  order y's, the linear spectrum of Ed3) is reobtained. We

ing small terms involvingdw a above resonance, i.e., ne- shall see that the approximate model is adequate for our in-
glecting higher-order cumulant¢éand omitting indexegs  tentions and that it is the numerous resonances that cause
Then, ia~wda+dwX which can be written as «f  decay. From the summation ruke=1/\/y§? and from Eq.
—w)da~SwX, where we assume harmonic behaviéa (9) one concludes thaj(t) decays in time; for earlier times
~e ' to estimate orders of magnitude. One can expresand relatively smally’s, g behaves asg~sin(\/5_3t)(1

dw _in terms of sa or da in terms of So and haves  —£?t%/6), and for later times it goes likey{t?) ~Y2 times
=dwda=[(w— w)/X*]|dal’=[X/(w—w)]y, respectively; an oscillating function. This is not an exponential decay, but

this yields|s|2= VW or |s|/(\/; IX[) = 1 /l sa|?/|X|, which nevertheless shows that the system preserves a past memory
is equal to the normalized fluctuation in the respective combfor prior times up to the correlation time,o,~1/y/75” and
Returning to our discussion, since the dynamics of théhat coherent energy decoheres within the same time scale
first two combs occurs away from any resonance and wittwhen the driveF ;,(t) is absent. When the drive is active, it
little fluctuation, we do not expect coherence decay thereis harder to make precise predictions, but in general terms
But when we examine the third comb the reasoning changesvhat we expect to see i) initially, transient chaos while
The fact is that the third comb is described by driven harcoherence is still present Xg; (i) after a time scale com-
monic oscillators which in principle cannot be approximatedparable tor,,,, decay ofX; towards an equilibrium or qua-
by modulational assumptions given the relatively high fieldsjequilibrium state determined by the ponderomotive drive
intensities. Even ifs;, are small initially, we expect that arising fromF,,. All the while, we expect that coherence be
the3+/1wnl be driven resonantly to large values by thepreserved in the first two combs. Note that our results con-
y(3“ )X3 terms which already contain spectral contributionsyast with those obtained by Robinson and Drysdalesince
at the average frequenciesy/w;. From this perspective one even for large fields we do expect to see copb3 loose
can use linear response theories to estimate the rate Withherence due to the resonant behavior introduced by the
which the coherent energy dissipates here. One simply réfsacond derivatives. Referenf@, on the other hand, shows
resents the solution foX; in the causal form that if all modes are first order in time, large amplitudes
imply phase locking and coherenceah combs.

Xs(t)= fo wg(T)[Flz(t_ 7)+i(t—7)ldr 8

with F(t)=NX,(t)X,(t)* andf(t) as & functions imple- Ill. SIMULATIONS

menting the initial conditions oX5. The propagatog(t) is ) " . i )

to be determined from all resonances arising from the lin- Ve aré now in position to investigate all those issues nu-
early coupled set for ali; , andXs, whenF,,—0. Ifall s5, merically and see if the predictions are correct. The follow-
are excluded, the resonances are located éby; whenss ; in_g conditions are given at=0,_which are equilibrium con-

is included but the remaining; , n=2 are not, the reso- ditions for the —pure triplet when modulational
nances appear at o= 7%, and so on. Ify{?) is small, ~aPproximations are employe(hlqza3q=p0/_\/§N, asq

all poles are thus roughly distributed around the main fre-= V2po/\3N, and a3q=0 for anyq, wherep is a control
quencyy w3 over a region of size/y3(25/63. The imaginary ~Parameter measuring initial field amplitudes. The central
partImg(w) of the Fourier transform of(t) contains con- modes of each comb are taken in the fokgr=ks=1 and
tributions from all poles in the formImg(w) Ke=0, the triplet resonance),;=w,+w; is satisfied this
~ZeKesd(@— wred), WhereK o are constants associated Way- Inzadd|t£on,p0=10, N=401, andA=0.1, which im-
with the resonances, argit) can be obtained from the for- plies yP)=yP=y(~0.013. We first look aXs in Fig. 1
mula[13] and compare our analytical mod@&) and(9) with full simu-
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FIG. 1. Comparing the analytical model with simulations. Analytical model and simulationsFwjth0 in panels(a) and (b), respec-
tively; analytical model and simulations with,, active in panelgc) and(d), respectively.

200 250 300

lations. In panelga) and (b) we setF;,—0, henceXsyee, ditions. We see from the figures that in both caxgslecays.

to test the approximations leading to agt). Estimate in  However, decay in the full simulations of partd) is slightly

(a) and simulations irfb) agree well in terms of decay times postponed due to the fact that here one has to go through
and the form with which coherence decays. The plots displaynitial transient chaos before reaching the steady state. Apart
the diffractive pattern produced by an infinity of modes atfrom that, the results are once again equivalent. Note as well
least up to long times where discrete effects arise due to othat asymptoticallyX; is comparable to the average of
using of a finite number of modes. We have chosen a suffiNX; X3 , as expected from ponderomotive force consider-
ciently largeN so our runs are not affected by discretenessations in our case wher@;~ 1. It is worth mentioning that
Then in panelgc) and(d) we compare the analytical model the type of decay we estimate and observe here belongs to
with full simulations whenFy, is active. In the analytical the same general type of incoherent decay numerically ob-
model, pictured in panelc), we consider an average served in a recent papgt4]. Next we examine the coher-
NX, X% — \/2p2/3N, which is consistent with the initial con- ence of thep=1 andp=3 combs, being the analysis of the

12

(b)

10 [ 3 1

>
T
Il
time

FIG. 2. Coherence analysis.
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Perhaps, we should end the work giving a brief account
on the behavior of the degree of coherence as a function of
field strengthpy, with py varying from very small to the
large values employed in this paper. To do that, a binary
diagram is made where on the vertical axis we simply record
the digit “1” if it happens thatr,=|s,1/(\¥? X,)| be-

comes larger than unity during a run of length.,. If r
1 always remains smaller than unity, we record digit “0” on
] the vertical axist,ax= 100 is taken, but other values yield
similar figures with little shifts in the transitions from 1
] —0 and 0—1. The result is displayed in our last figure, Fig.
10 3. Considering combp=1 andp=3 as previouslywe re-
call that the second comb is similar to the firsine clearly
sees the various regimes detected in the present and earlier
works. For small values gi,, one has incoherence and thus
FIG. 3. Binary bifurcation diagram with basis on the control large fluctuations, ; [3]. As p, increases one goes through
parametep,. Level ‘1’ denotes incoherence, and level “0” denotes a region where fluctuations are small—this is where phase
coherence. Symbols indicate where simulations were actually petocking is efficient to maintain coheren¢8,5]. Larger val-
formed. ues ofpg place the system within chaotic regions where co-
herence is again lo$6] and yet larger values g, finally
p=2 comb similar to the analysis of the first. Figuréa2 restore coherence for the first comb, leaving the third comb
compares the relative quantities=|s, 1|/(W|X1|) and in its incoherent state; this is the regime of partial coherence
ra=|ss 1//(Vy@ |X;]). We see that relative fluctuations in analyzed in the present paper.
the first comb are always smaller than unity while fluctua-
tions in the third comb can attain much larger values. In
other words, coherence is destroyed for 3 but remains ) )
solid and steady as far as the first and second combs are 10 conclude, we have analyzed the broad-band triplet in-

considered. To examine the behavior of the high-frequen\t/:érerac’[ion in regimes of large amplitudes. Linear response
spectral content of the first comb as a function of the slown€ory associated with nonlinear techniques was used to

time over which the dynamics of the third comb develops,thOW ;hat partially coherent states emerge from the interac-
we employ a wavelet transform. Specifically, we wavelettion \.Nlth'sor.ne waves preserving coherence and some not.
transform the nonlinear driving terfy=NX,X; acting on The implications of these results for all matters concerning
the first comb and display the resulting time dependent sped¥ning and coherence of the high-frequency subsystem is of
tral distribution in Fig. 2b) with higher intensities repre- central relevan.ce. If one thinks of a laser mterac.tlng with a
sented by brighter shades. The spectral distribution indicatdionlinéar medium, the model suggests that while the me-
that the driver operates mostly at high frequencies with littlediUm itself may undergo a number of random alterations as

content in low-frequency bands. This also agrees with thdhe interaction progresses, the laser modes will remain coher-
fact that all3, ;=€'“1's, ,, which have resonant frequencies ent. Not only that, the excess coherent energy driving the

_ ; tem into chaos is damped out and the final high-frequency
centered atw=0 and extending only up to/y®, are SYS )
slightly excited. Wavelet analysis is defined in the form modes become regular, as well as coherent. The same kind of

comment is true for Langmuir plasma waves interacting with
ion waves: the subsystem formed by the ion waves looses
coherence, but the plasma waves emerge from the interaction
with coherence untouched, and this may be of importance as
coherence favors modulational instabilities. The method of
analysis seems to be practical, useful, and shall be employed
for further analysis of the problem exposed here.
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IV. FINAL CONCLUSIONS

- T2, .
F23(t,w)E(l/T)f [e'“1" Foqt/)]e '@t dt’
t=T/2

with T=2%T;,st, Trast @S @ quantity with the order of mag-
nitude of the characteristic time scale associated with high
frequency oscillationsT ;= 1/po. Figure Zc) compares the
dynamics of the rightmost and central modes of comb
=1, Rda; A/Ak]' and Réa, o], respectively. It shows in a

more explicit way the high degree of coherence present in The authors acknowledge partial support by CNPq,
the high-frequency modes. Brazil.
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