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Correlation decay and partial coherence in nonlinear wave interactions
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In the present analysis we study the broad-band triplet interaction in regimes of large amplitudes. Linear
response theories associated with nonlinear arguments are used to show that even though coherence of high-
frequency modes is lost as one first encounters chaotic regimes, it can be restored as field amplitudes grow
further. We discuss implications of the feature for fixed-phase interactions.
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I. INTRODUCTION

Nonlinear wave dynamics can be frequently modeled
the interaction of a few monochromatic modes@1#. In many
cases the dynamics involves three higher-amplitude mo
in which case one refers to the model as the triplet w
interaction. Triplet interaction is one of the most significa
forms of the wave interaction, presenting the most promin
nonlinear features in wave systems. It comes in several
sions, and the one we are about to examine here is the
servative regime, where sources and dissipation are abse
large variety of situations can be described by the conse
tive triplet interaction, for instance decay instabilities
laser-plasma interactions, three-mode interaction in op
and others.

The classic pure triplet interaction has been shown to
integrable by explicit quadrature methods, and this happ
so because one defines the classic model in terms of reso
modes that can be well described with first order time
rivatives only. The modes just keep exchanging ene
among themselves in a very regular and periodic fashion
question analyzed by a number of researchers concern
behavior of the system when each of the three single mo
of the classic picture is replaced with a narrow comb
many modes@1–3#. One relevant result is that the dynami
can still preserve its simplicity if the mode amplitudes a
large enough, such that they can create a strong mean
trapping all modes through a phase-locking mechanism@3#.
In this case the various modes in each comb behave
coherent way, i.e., deviating only slightly from their e
semble average. On the other hand, if the field amplitu
are small, phase locking is absent and coherence is los
this case the interaction is best described with the aid
random phase approximations.

More recent papers analyze the problem from a yet
ferent perspective@4,5#. The issue addressed was the usa
of first order time derivatives to model the interaction. Wh
each comb has its dominant carrier frequencyv, eventual
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second order time derivatives acting on the appropriate fie
can be approximately replaced according to the known s
modulational rule] t

2;62iv] t , i 2521. This means a
much slower process than the one scaled by the carrier
quencyv and it establishes, after all, what we understand
resonant interaction. Now since the typical frequencies
amplitude modulations tend to increase with field intensity
is to be expected that the slow modulational approach o
lined above ceases to be valid at some point. In the vicin
of the point where the modulational approach breaks do
chaos is likely to appear due to resonance overlaps involv
linear and nonlinear frequencies, and when chaos is pres
the coherence tends to diminish. This is what we see as
increase the field intensities of the model analyzed in R
@5#. But if one increases the field intensities further, the c
herence is partially recovered. This result was barely noti
in Ref. @5# and we explore the feature more deeply he
given the current interest in the generation of coherent ra
tion @6#. With use of linear response methods convenien
associated with nonlinear techniques we show that parti
coherent states emerge from the interaction with some wa
preserving coherence and some not. The general rule is
coherence of higher-frequency waves is harder to bre
down, so one can imagine a situation where a laser pa
traverses a nonlinear medium: even if the medium is hea
affected by the chaotic interaction, the laser may still
described in terms of fixed-phase modes, which is a desir
feature. All these points can be observed in the context of
Zakharov equations, for instance. These equations are kn
as one of the best models to describe the interaction of h
and low-frequency modes in a variety of nonlinear enviro
ment and they clearly show the transition from modulatio
to chaotic regimes@7–9#. Even in more complicated setting
knowledge of the coherent/incoherent behavior of Zakha
triplets allows one to determine whether or not modulatio
instabilities are present; it is known, for instance, that inc
herence inhibits modulational instabilities@10,11#.

The paper is organized as follows. In Sec. II we pres
the model and handle the governing equations to extrac
formation on the transition from coherent to partially inc
herent states; in Sec. III simulations are performed to c
firm the analytical estimates; and in Sec. IV we draw o
final conclusions.
©2003 The American Physical Society01-1
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II. THE MODEL

In the case of the triplet interaction one has three com
of fields apq , p51,2,3 with many modes each,2(N21)/2
<q<(N21)/2. We takeN as odd to simplify mode count
ing. This way we have a central modeq50 surrounded by a
symmetric distribution atq.0 andq,0. Our results are of
course independent of this particular choice forN. The inter-
action can be modeled by the following set@1–3,5#:

i ȧ1q5v1qa1q1
1

N (
q8,q9

a2q8a3q9 , ~1!

i ȧ2q5v2qa2q1
1

N (
q8,q9

a1q8a3q9
* , ~2!

ä3q52v3qa3q2
k3

2

N (
q8,q9

a1q8a2q9
* . ~3!

As explained in Ref.@1#, Eqs.~1!–~3! are obtained when on
writes down the appropriate Fourier analyzed govern
equations and averages over large groups of modes in
comb. The assumption is that individual modes in each co
cannot be well resolved spatially, but time is not restric
and the full difference in frequencies is still contemplated
the linear terms of the equations. This is the appropriate p
cedure if one wishes to study the transition from narr
combs to the strictly pure three-mode interaction. The fi
two combs describe the amplitude of high-frequency fie
like lasers or Langmuir plasma waves, and the latter desc
full low-frequency fields.

vpq[kpq
2 , kpq[kp1qDk ,

whereDk is the spectral distance of contiguous modes in a
comb andD[(N21)Dk/2 is the half width of the combs
which we assume to be the same. It is convenient to in
duce(qa1q[r. WhenN51, we retrieve the pure case an
lyzed in Refs.@4# and @5#. We call theN51 case the syn-
chronized manifold since this situation would represent w
happens should all modes oscillate coherently. What
been found in those two cited papers is that ifr*1, the
dynamics of the synchronized manifold is chaotic due to
presence of second order time derivatives in the equa
controlling a3. As a matter of fact, we observe here that t
Lyapunov exponents scales likes; ln r in the range 1,r
,100. Then, initial studies published in Ref.@5# show that in
these chaotic cases coherence is lost if we letN.1 andDÞ0
for r;1—which is expected in view of the presence of ch
otic activity in the synchronized manifold—but is at lea
partially recovered ifr is further increased tor@1, a some-
what unexpected behavior. Due to its physical interest,
higher-intensity range is the subject of analysis of the pres
paper. To see what happens we now introduce our forma
in terms of the concepts of average and fluctuation for
arbitrary quantitygpq within each comb:gpq[(qgpq /N and
dgpq[gpq2gpq. Then if one definesapq[Xp and vpq
05660
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[v̄p , and recursively spq,n[dvpqdspq,n21 with spq,0
[dapq and spn[spq,n, one arrives at the following infinite
cumulant hierarchy:

iẊ15v̄1X11s1 11N X2 X3 ,

i ṡ1 n5v̄1 s1 n1s1 n111g1
(n11)X1 , ~4!

iẊ25v̄2X21s2 11N X1 X3* ,

i ṡ2 n5v̄2 s2 n1s2 n111g2
(n11)X2 , ~5!

Ẍ31v̄3 X352s3 12N X1 X2* ,

s̈3 n1v̄3 s3 n52s3 n112g3
(n11)X3 . ~6!

for n51,2,3,4, . . . , etc. gp
(n11)[@dvpqd:#ndvpq, where

‘‘ d: ’’calculates the fluctuation of everything on its righ
side—gp

(2)[@dvpqd:#dvpq5(dvpq)
2, for instance. This

way of displaying the multitude of equations we have to d
with—in terms of averages and fluctuations of the pertin
quantities—is equivalent to the projector method propo
by Martins and Mendonc¸a some time ago@2#. The present
alternative is more adequate for the purposes we hav
mind, since it introduces all the fluctuations in terms of line
processes governed by differential equations. Let us sk
what can be expected in regimes of relatively high-pow
waves, for instancer*10; for further purposes, note tha
Xp;r/N. Fields of this order of magnitude look big, but i
fact result from multiplying factors involving the ion-to
electron mass ratio in the Zakharov equations and can
adequately described with the nonlinearities included in
original model~1!–~3! as explained in Ref.@10#. As a matter
of fact our normalized fieldr can be written in the form
r25(3mi /4me)W, whereW denotes the ratio of electric to
thermal energy,W[e0Ephysical

2 /4nkBTe with n as the par-
ticle density,mi ,e as the ion~electron! mass,kB as the Bolt-
zman constant, andTe as the electron temperature. Forr
510 andmi /me;103 this yieldsW;0.1, which falls well
inside the validity region of the Zakharov equations. Cons
ering typical physical parameters of nonrelativistic beam
periments,n;108 cm23, Te;1 eV, mi /me*103 for argon
~hydrogen and helium have been used for these experim
as well!, and the electric field of injected Langmuir wave
Ephysical;10 V/cm, one has indeedW;0.1 or even larger
@10,12#. Returning to our arguments, as a first step one
sumes initially coherent modes with small values for t
various fluctuationssp n . Then consider the first equations o
sets~4! and (5) redefiningXj5X̂je

2 i v̄ j t, j 51,2, such that
one can write

i Ẋ̂15N X̂2 X3 ei v12t, i Ẋ̂25N X̂1 X3* e2 i v12t, ~7!

v12[v̄12v̄2. Equations~7! suggest that variablesX̂1 and
X̂2 are oscillating on a fast time scale, given the magnitu
of the time derivatives when the fields are large. Equatio
~6! on its turn suggest thatX3 oscillates on a much slowe
time scale essentially determined by the average freque
1-2
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Av̄3; even if the driverX1X2* contains high-frequency com
ponents, we expect that the main spectral contribution co
from ponderomotive forces at low frequencies of the orde
Av̄3. The slowness ofX3 allows us to see Eq.~7! as an
adiabatic process in which bothX1 and X2 oscillate with a
slowly varying frequencyV1;r, which is large. Fluctua-
tions sj 1, if now reconsidered, can be treated similarly a
shown to scale likesj 1 /Ag j

(2);(Ag j
(2)/V1)Xj , which is

much smaller thanXj simply because the width of the pack
is small andV1 is large. Note that we divides by Ag in
order to compensate for thedv factor contained in the defi
nition of s; in general, ifus/Agu;uXu fluctuations are signifi-
cative and whenus/Agu!uXu they are not; we shall take th
quantity usp 1 /(Agp

(2) Xp)u as a measure of coherence f
each comb. As an alternative view on the meaning
s/(AgX), consider the equation forda from Eq.~1! neglect-
ing small terms involvingdvda above resonance, i.e., ne
glecting higher-order cumulants~and omitting indexes!.
Then, idȧ;v̄da1dvX which can be written as (v
2v̄)da;dvX, where we assume harmonic behaviorda
;e2 ivt to estimate orders of magnitude. One can expr
dv in terms of da or da in terms of dv and haves
[dvda5@(v2v̄)/X* #udau25@X/(v2v̄)#g, respectively;

this yieldsusu25gudau2 or usu/(Ag uXu)5Audau2/uXu, which
is equal to the normalized fluctuation in the respective com

Returning to our discussion, since the dynamics of
first two combs occurs away from any resonance and w
little fluctuation, we do not expect coherence decay the
But when we examine the third comb the reasoning chan
The fact is that the third comb is described by driven h
monic oscillators which in principle cannot be approximat
by modulational assumptions given the relatively high fie
intensities. Even ifs3 n are small initially, we expect tha
they will be driven resonantly to large values by t
g3

(n11)X3 terms which already contain spectral contributio
at the average frequencies6Av̄3. From this perspective on
can use linear response theories to estimate the rate
which the coherent energy dissipates here. One simply
resents the solution forX3 in the causal form

X3~ t !5E
0

1`

g~t!@F12~ t2t!1 f ~ t2t!#dt ~8!

with F12(t)[NX1(t)X2(t)* and f (t) as d functions imple-
menting the initial conditions onX3. The propagatorg(t) is
to be determined from all resonances arising from the
early coupled set for alls3 n andX3, whenF12→0. If all s3 n

are excluded, the resonances are located at6Av̄3; whens3 1
is included but the remainings3 n n>2 are not, the reso
nances appear at6Av̄36Ag3

(2), and so on. Ifg3
(2) is small,

all poles are thus roughly distributed around the main f
quencyAv̄3 over a region of sizeAg3

(2)/v̄3. The imaginary
part Img(v) of the Fourier transform ofg(t) contains con-
tributions from all poles in the form Im g(v)
;( resKresd(v2v res), whereKres are constants associate
with the resonances, andg(t) can be obtained from the for
mula @13#
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pE0

`

Img~v!sin~v t !dv. ~9!

The collection of all poles can be replaced with a continuo
distribution provided*0

1`vIm g(v) dv5p/2, which is a
high-frequency summation rule. The problem is thus, how
model the distributionImg(v)? We adopt the simplest op
tion here and takeImg(v)5K if 2Ag3

(2)<v22v̄3

<Ag3
(2) with K as a constant, andImg(v)50 otherwise.

This form does not include higher-order correctionsg3
(n) n

>3, but is analytically treatable and does observe the cru
fact that one has large number of resonances acting upon
system. If one refines the spectral description with high
order g ’s, the linear spectrum of Eq.~3! is reobtained. We
shall see that the approximate model is adequate for ou
tentions and that it is the numerous resonances that c
decay. From the summation ruleK51/Ag3

(2) and from Eq.
~9! one concludes thatg(t) decays in time; for earlier times
and relatively smallg ’s, g behaves asg;sin(Av̄3t)(1
2g3

(2) t2/6), and for later times it goes like (g3
(2)t2)21/2 times

an oscillating function. This is not an exponential decay,
nevertheless shows that the system preserves a past me
for prior times up to the correlation timetcor;1/Ag3

(2) and
that coherent energy decoheres within the same time s
when the driveF12(t) is absent. When the drive is active,
is harder to make precise predictions, but in general te
what we expect to see is:~i! initially, transient chaos while
coherence is still present inX3; ~ii ! after a time scale com
parable totcor , decay ofX3 towards an equilibrium or qua
siequilibrium state determined by the ponderomotive dr
arising fromF12. All the while, we expect that coherence b
preserved in the first two combs. Note that our results c
trast with those obtained by Robinson and Drysdale@3# since
even for large fields we do expect to see combp53 loose
coherence due to the resonant behavior introduced by
second derivatives. Reference@3#, on the other hand, show
that if all modes are first order in time, large amplitud
imply phase locking and coherence inall combs.

III. SIMULATIONS

We are now in position to investigate all those issues
merically and see if the predictions are correct. The follo
ing conditions are given att50, which are equilibrium con-
ditions for the pure triplet when modulationa
approximations are employed,a1q5a3q5r0 /A3N, a2q

5A2r0 /A3N, and ȧ3q50 for anyq, wherer0 is a control
parameter measuring initial field amplitudes. The cen
modes of each comb are taken in the formk15k351 and
k250, the triplet resonancev15v21v3 is satisfied this
way. In addition,r0510, N5401, andD50.1, which im-
plies g1

(2)5g3
(2)[g (2)'0.013. We first look atX3 in Fig. 1

and compare our analytical model~8! and~9! with full simu-
1-3
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FIG. 1. Comparing the analytical model with simulations. Analytical model and simulations withF1250 in panels~a! and ~b!, respec-
tively; analytical model and simulations withF12 active in panels~c! and ~d!, respectively.
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lations. In panels~a! and ~b! we setF12→0, henceX3,f ree ,
to test the approximations leading to ourg(t). Estimate in
~a! and simulations in~b! agree well in terms of decay time
and the form with which coherence decays. The plots disp
the diffractive pattern produced by an infinity of modes
least up to long times where discrete effects arise due to
using of a finite number of modes. We have chosen a su
ciently largeN so our runs are not affected by discretene
Then in panels~c! and ~d! we compare the analytical mode
with full simulations whenF12 is active. In the analytica
model, pictured in panel~c!, we consider an averag
NX1X2* →A2ro

2/3N, which is consistent with the initial con
05660
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ditions. We see from the figures that in both casesX3 decays.
However, decay in the full simulations of panel~d! is slightly
postponed due to the fact that here one has to go thro
initial transient chaos before reaching the steady state. A
from that, the results are once again equivalent. Note as
that asymptoticallyX3 is comparable to the average o
NX1X2* , as expected from ponderomotive force consid
ations in our case wherev̄3;1. It is worth mentioning that
the type of decay we estimate and observe here belong
the same general type of incoherent decay numerically
served in a recent paper@14#. Next we examine the coher
ence of thep51 andp53 combs, being the analysis of th
.
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FIG. 2. Coherence analysis
Relative fluctuational levelsr 1(t)
and r 3(t) in panel ~a!, contour

plots of uF̃23(t,v)u in panel ~b!,
and explicit mode comparison in
panel~c!.
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p52 comb similar to the analysis of the first. Figure 2~a!
compares the relative quantitiesr 1[us1 1u/(Ag (2) uX1u) and
r 3[us3 1u/(Ag (2) uX3u). We see that relative fluctuations i
the first comb are always smaller than unity while fluctu
tions in the third comb can attain much larger values.
other words, coherence is destroyed forp53 but remains
solid and steady as far as the first and second combs
considered. To examine the behavior of the high-freque
spectral content of the first comb as a function of the sl
time over which the dynamics of the third comb develo
we employ a wavelet transform. Specifically, we wave
transform the nonlinear driving termF23[NX2X3 acting on
the first comb and display the resulting time dependent sp
tral distribution in Fig. 2~b! with higher intensities repre
sented by brighter shades. The spectral distribution indic
that the driver operates mostly at high frequencies with li
content in low-frequency bands. This also agrees with
fact that allŝ1 n[ei v̄1ts1 n , which have resonant frequencie
centered atv50 and extending only up toAg (2), are
slightly excited. Wavelet analysis is defined in the form

F̃23~ t,v![~1/T! E
t2T/2

t1T/2

@ei v̄1t8F23~ t8!#e2 ivt8dt8

with T524 Tf ast , Tf ast as a quantity with the order of mag
nitude of the characteristic time scale associated with h
frequency oscillations:Tf ast[1/r0. Figure 2~c! compares the
dynamics of the rightmost and central modes of combp
51, Re@a1 D/Dk

#, and Re@a1 0#, respectively. It shows in a
more explicit way the high degree of coherence presen
the high-frequency modes.
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FIG. 3. Binary bifurcation diagram with basis on the contr
parameterr0. Level ‘1’ denotes incoherence, and level ‘‘0’’ denote
coherence. Symbols indicate where simulations were actually
formed.
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Perhaps, we should end the work giving a brief acco
on the behavior of the degree of coherence as a functio
field strengthr0, with r0 varying from very small to the
large values employed in this paper. To do that, a bin
diagram is made where on the vertical axis we simply rec
the digit ‘‘1’’ if it happens that r p5usp 1 /(Ag (2) Xp)u be-
comes larger than unity during a run of lengthtmax. If r p
always remains smaller than unity, we record digit ‘‘0’’ o
the vertical axis;tmax5100 is taken, but other values yiel
similar figures with little shifts in the transitions from 1
→0 and 0→1. The result is displayed in our last figure, Fi
3. Considering combsp51 andp53 as previously~we re-
call that the second comb is similar to the first!, one clearly
sees the various regimes detected in the present and e
works. For small values ofr0, one has incoherence and thu
large fluctuationssp 1 @3#. As r0 increases one goes throug
a region where fluctuations are small—this is where ph
locking is efficient to maintain coherence@3,5#. Larger val-
ues ofr0 place the system within chaotic regions where c
herence is again lost@5# and yet larger values ofr0 finally
restore coherence for the first comb, leaving the third co
in its incoherent state; this is the regime of partial cohere
analyzed in the present paper.

IV. FINAL CONCLUSIONS

To conclude, we have analyzed the broad-band triplet
teraction in regimes of large amplitudes. Linear respo
theory associated with nonlinear techniques was used
show that partially coherent states emerge from the inte
tion with some waves preserving coherence and some
The implications of these results for all matters concern
tuning and coherence of the high-frequency subsystem i
central relevance. If one thinks of a laser interacting with
nonlinear medium, the model suggests that while the m
dium itself may undergo a number of random alterations
the interaction progresses, the laser modes will remain co
ent. Not only that, the excess coherent energy driving
system into chaos is damped out and the final high-freque
modes become regular, as well as coherent. The same kin
comment is true for Langmuir plasma waves interacting w
ion waves: the subsystem formed by the ion waves loo
coherence, but the plasma waves emerge from the interac
with coherence untouched, and this may be of importanc
coherence favors modulational instabilities. The method
analysis seems to be practical, useful, and shall be emplo
for further analysis of the problem exposed here.
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