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Modeling velocity in gradient flows with coupled-map lattices with advection
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We introduce a simple model to investigate large scale behavior of gradient flows based on a lattice of
coupled maps which, in addition to the usual diffusive term, incorporates advection, as an asymmetry in the
coupling between nearest neighbors. This diffusive-advective model predicts traveling patterns to have veloci-
ties obeying the same scaling as wind velocities in the atmosphere, regarding the advective parameter as a sort
of geostrophic wind. In addition, the velocity and wavelength of traveling wave solutions are studied. In
general, due to the presence of advection, two regimes are identified: for strong diffusion the velocity varies
linearly with advection, while for weak diffusion a power law is found with a characteristic exponent propor-
tional to the diffusion.
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I. INTRODUCTION then, they have been successfully applied to a plethora of
fields involving spatiotemporal complexity such as fluid dy-
The aim of the present paper is to introduce a simplenamics, optics, chemical reactions, plasma, biology, [&fc.
model for studying a number of dynamical features observe€MLs have even been used to simulate quantum field theo-
in atmospheric circulation systems. While still preservingries [9]. By far the most popular CML model is that of a
nonlinear effects, the motivation of the model is to simplify diffusive lattice of quadratidlogisticc maps[8,10]. CMLs
the familiar description based on the differential equationdescribe the collective behavior of (@sually quite large
underlying the dynamics, Ed1) below, in order to spare number of interacting low-dimensional local dynamical sys-
computation time. For a number of applications, a reducedems placed on a discrete spatial lattice. So, in addition to the
time of computation opens the possibility for investigatinginternal dynamics of individual “units,” or “cells,” CMLs
single atmospheric scenarios over much larger time spanare also characterized by the very rich collective dynamics
over decades, centuries, or beyond, and allows evaluatingrising from the coupling between units.
average behaviors over larger ensembles of individual sce- In a seminal work introducing a general procedure for
narios. In addition, fast-running algorithms are very handy inconstructing low-order models of atmospheric circulation,
ruling out unrealistic processes. Lorenz [2] explains that “The most prominent nonlinear
As is well known[1-3], in setting up models of atmo- terms in the[equations governing the behavior of the atmo-
spheric circulation it is common to use sets of spatially conspherg, and the only ones appearing in some of the most
tinuous orthogonal functions to obtain a discrete and finitepopular simplifications, represent the advection of some vari-
set of numbers, a lattice, which approximates in every atmoable quantity . ... Theterms are therefore quadratic, con-
spheric layer the fields corresponding to each of the depernaining products of the advected quantities with the advect-
dent variableswind components, temperature, ¢tddori-  ing wind. They cannot be removed by any transformation of
zontal derivatives are then expressed as linear combinationke independent or dependent variables.” Thus, these argu-
of the horizontal derivatives of the orthogonal functionsments clearly show that any realistic attempt at forecasting
which, in turn, are approximated by linear combinations ofthe evolution of atmospheric systems must incorporate ad-
the same functions. In general, atmospheric and oceanaection[2,11,19.
graphic forecasts based in partial differential equations dis- The basic physical process underlying standard CML
cretized on such lattices involve quite elaborate computamodels of today is the diffusion among individual cdl§y
tions [1-7]. However, an alternative elegant way to studyand, therefore, to use CMLs as models of atmospheric sys-
physical processes is by using a different type of lattice, onéems one needs first to extend them to include advection.
where the clock ticks with longer intervals, the so-calledHere we show that a discretization of the appropriate differ-
coupled-map latticeg3]. ential equation leads very naturally to a slight generalization
Coupled-map latticeCMLs) were introduced in the of the standardpurely diffusiveé CML model, a generaliza-
early 1980s in investigations of spatiotemporal chaos. Sincéon which is quite appealing as a model of atmospheric sys-

tems.
The paper is organized as follows. In Sec. Il we start by
*Email address: http://www.icat.fc.ul.pt/umc/plind deriving the model. In Sec. Il the velocity of traveling pat-
"Email address: jcr@fc.ul.pt tern solutions is studied and the numerical results are com-
*Email address: http://www.if.ufrgs.brjgallas pared with those obtained for atmospheric fluids such as gra-
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dient flows. Section IV presents a study of the more . POWER LAW FOR TRAVELING
particular solutions, called traveling waves. Here we empha- PATTERNS VELOCITY
size the variation of their wavelengths with advection. A final

discussion and conclusions are given in Sec. V. One of the most interesting features of the model is the

existence of traveling pattern solutions either in the absence
[8,14,164 or in the presenci20] of advection. In this section
we study the variation of the velocity of such traveling pat-

The purpose of this section is to introduce the diffusive-terns as a function of both advectionand diffusions. A
advective CML model. This is done by extending the standMmain result is that the velocity has a correspondence with the
dard diffusive CML model to incorporate advection. To this So-called gradient wind velocify21] over a certain region in
end we discretize in space and time the general equatioft€ parameter space.

Il. THE DIFFUSIVE-ADVECTIVE CML MODEL

controlling the time evolution of any given intensive physi- In atmospheric circulating systems, the gradient wind

cal propertyP, namely, equation is a solution of the equation of motion describing
the balance between the centrifugal force, the pressure gra-

aP R , dient force, and the Coriolis force. In other words, the gra-

ot KVPmu VP APPY, .., (D dient wind is a frictionless wind describing the motion of

atmospheric flows in closed trajectoriggl]. The presence
wherev is the advective velocity ant the diffusion coef- of a cgntrifugallforce yieId; different sollutions for the gradi-
ficient[13]. The functionalF depends in general qRand its €Nt wind velocity, depending on the signs of the curvature
spatial derivatives and includes all additional contributions. radius and of the pressure gradient. Some of these solutions
Assuming for simplicity a single spatial dimension and &€ “nonphysical” while the others explain the four types of

unitary increments in space and time, a straightforward dis{mospheric pressure system occurring at the mesoscale,
cretization of Eq(1) yields namely, the so-called normal or anomalous highs and normal

or anomalous low§21,22. In the atmosphere, the combina-

K—v 2K+v tion of these pressure systems is determinant for its long
Pore1=(1=2K)Po st =5 Prsrst =5 Pooas term behavior; it is rather difficult to predict their evolution
for long periods of time, weeks and beyof8].
+F(Prxin), (2) In general, the gradient wind velocity depends on the so-

called geostrophic wind velocitysee Eq(6) below], that is,
wherei=0,1,2 ... and theintegersr andn label time and  on the horizontal pressure gradient force. In this section we
position in the lattice, respectively. argue that the advection may be interpreted as the geo-
For a generid=(P,; ,), a plausible first approximation is strophic velocity.
to consider the system as evolving in a “mean field” which  Wwithout advection, Eq(3) is known to support traveling
acts effectively so as to modify homogeneously the relativevave solutions over a wide range of parametg8slé],
weights of P, ., Pni1,, andP,_q, in the first three terms namely, 1.6<a<1.85 and 0.4 £<0.9, but always for rather
of the second member of ER). This leads to low velocities, of aboub ~10 2 sites/step. Two important
N effects of the advection here afie¢ to induce movement in
1 ey &ry patterns which would be otherwise stationary, gindto al-
Prrea= (=)l (Pt 5= 1(Pova) ¥ 57 1(Poo1a) 00 Velocities to be easily tuned, up to three orders of mag-
(©)) nitude. These effects happen over wide parameter ranges.
Figure 1 shows the velocity of a pattern traveling on a

wherey=u represents the advectioni=2K is the coupling  |ayice with L=64 sites as a function of the advection

parametgr representing diffusjon, af(ck) stand_s for.the IQ' computed during 1Dsteps after a transient of 18teps. The
cal nonlinear map representing the mean field, in SUItabI%ependence is rather different depending on whether the dif-

units. In the remainder we consider the rich dynamics of E.qfusion is strong or weak, with the transition between these
(3) when the local cells are ruled by the usual quadratlcregimes happening far,~0.27

function f(x)=1—ax?, with periodic boundary conditions As illustrated by Fig. (a), for weak diffusion there is a
XL+n=Xn, Wherel i_s the total number .Of lattice sites. lear domain where the vélocity is locked @& 0 for an

If, as usual, one mterprets the coefficients 'of the nonloc nterval — y.< y=< ., y. being the maximum value of for
terms in Eq'(3)’ as coupling pgrameters varying between O\which velocity locking occurs. Outside this locking interval
(no coupling and 1 (full coupling), then for O<e<1 the the velocity is well fitted by a power law
allowed interval ofy is —e<y<e.

Equation (3) defines the model incorporating advection
through the parameter which corresponds to an asymmetry v
in the coupling with nearest neighbors. In the absence of v=m(|7|—7c)“— 0, (4)
advection ¢/=0) Eq. (3) reduces to the familiar diffusive
model [8,14-18. For y=*¢ Eq. (3) reduces to the so-
called one-way coupling modgl7]. With minor changes of wherea depends on the diffusioa and the constar® rep-
variable, Eq.(3) contains all previous models which in one resents small fluctuations around the best fit. From the small
way or another have asymmetries in the coup(ibg,19. scale behavior shown in Fig(kd) one recognizes that var-
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FIG. 1. Velocity dependence on the advection @rweak dif- 001 - %6%5/ g, rff / f
fusion (¢=0.1) and periodic local dynamica €& 1); (b) zoom of / i & , & €1
(@ showing step-function fluctuationsc) strong diffusion €

=0.5) and chaotic local dynamica € 1.7); (d) zoom of(c) show-
ing small fluctuations about=y. HereL=64.
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. . . . ) FIG. 2. The transition from weake(0.27) to strong 4
ies like a step function and that the velocity “hesitates” be-~ g 57y giffusion, fora=1. (8 Symmetryov(y,s)=—v(— 7,s)

tween different constant values which are roughly equallyyng locking regiorv=0; (b) projection ofv onto the yXe sub-
spaced. space, emphasizing the locking region and showing lines of con-
For strong diffusion Eq(4) no longer applies, the velocity = stantv, v,=0.04,v,=0.08,v5=0.12, andy,= 0.16;(c) the veloc-
then varying linearly withy [see Fig. 1c)], apart from a ity as a function ofy for £;,=0.06, £,=0.08, £3=0.1, £,=0.14,
small fluctuation around = v. This fluctuation may be either ;=0.2, andeg=0.27~¢, (see text HereL =64. Similar results
random, for chaotic local magsee Fig. 1d)], or vary in  are obtained for other lattice sizes.
steps, for periodic local maps. Important here is that, despite
the strong diffusion, advection dominates diffusion com-tion of diffusion. Figure 8) showsv X y plots similar to
pletely with the numerical value of being a very good first those in Fig. 2c) but on logarithmic scales for 12 different
approximation of the velocity value. This is in perfect agree-values of the diffusiort €[0.06,0.58. The best fit for these
ment with the identification of in Eq. (3). In addition, our  curves is the linear fit as illustrated in Fig(b3, where the
results show that no power law holds for chaotic local mapssiope corresponds to the exponenin Eq. (4). Furthermore,
independently of the diffusion strength. Since we are interall the fits intersect roughly at the same poitit
ested in power-law behaviors, we concentrate henceforte: (log I'* log v*)~(—3.16,-3.14), where we defind™*
only on periodic local maps. For a more detailed study of=|y*|— .. With these values of* andv* we obtain an
chaotic coupled maps see REZ0]. expression for the lines for any value af making it pos-

Figure 2 illustrates the transition from weak to strong dif- sible to write an approximate expression fm’, name|y,
fusion, showing the velocity dependence on both parameters,

advectiony and diffusione, for a=1, when the local maps Ve

oscillate with period 2. As illustrated in the tridimensional 7C:|y|_r*(_)

plot in Fig. 2a), the velocity shows axial symmetry around

vy=0, namely,v(y,e)=—v(—y,&). Furthermore, one sees

the full region of velocity locking ab =0. This region is  Figure 3c) clearly shows thati) for the weak diffusion re-

emphasized in Fig.(®) which shows the projection afinto  gime,e<g, the exponentr is proportional to the diffusion

the £ X y subspace. The maximum valye of the velocity ~ while (ii) for the strong diffusion regimex~1. In other

locking region decreases when diffusion gets stronger. Avords,« is truly a characteristic exponent, and the above Eq.

similar projection into thev X y subspace is illustrated in (5) gives an approximate value f for any (y,e,v) in the

Fig. 2(c), suggesting that the exponentin Eq. (4) increases region where the power-law behavior existge Fig. 2

up to ~1 for &;. Beyond this threshold the velocity is not  So far, we have considered the dynamic effect of advec-

locked anymore but depends linearly on the advection, ation in the collective behavior of a coupled lattice. However,

shown in Fig. 3. a particularly interesting situation arises for-0.06, where
Figure 3 illustrates not only the power-law behavior of thefrom Fig. 3c), one findsa=0.5. In other words, in this case

velocity, but also the variation of the exponentas a func- the velocityv is proportional toy|y|— v., therefore scaling

®)
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FIG. 4. Wavelength as a function of advection. Histograms were
computed from 50 random initial conditions for 100 valuesyof

ferent spatial scales. In the real atmosphere, atmospheric
waves also occur in different spatial scales, generated by
local conditions such as topograpf4] and influencing the
global climate over different spatial scalg€®5], e.g., the
cycle of tides[26] and, as found very recently, the distribu-
tion of ozone holes at the earth polga7]. Most of these
log(Iyl —Yc) atmospheric waves are generated by dynamical processes
1 : : : and interact nonlinearly; they are crucial elements in atmo-
) spheric forecasts at all scales.

08 L . E As recently showri16], in the absence of advection the

& | GF * ] region delimited by 1.&a<1.85 and 0.4¢<0.9 is charac-

0 | \ i terized by the presence of wavelike patterns, i.e., patterns
. " € (C) with spatial periodicityx;(i)=x;(i +k) with k~8 sites[8].
I . ] In this domain, by adding advection, static wavelike patterns
045 ' 02 ' 0.4 ' 0.6 start to move while moving patterns increase their velocities;
€ in other words, all patterns turn into traveling waves. We
proceed by considering traveling wave solutions of &),
investigating the spatial dependence of their wavelength on
the parameters. Wavelengths were computed from analysis
of the spatial correlations among lattice sifgg], namely,

FIG. 3. Variation of the exponeni as a function of the velocity
and advectior{see Eq.(4)] (a) Log-log plot of the velocity as a
function of y— vy, and(b) the corresponding fits of the data, where
P~(—3.16,-3.14) is the approximate intersection of all the lines
(see text (c) Variation of @ as a function of showing the transi-
tion, at aboute;=0.27, from the weak to the strong diffusion re- <Xin>_<Xi><Xj>
gimes. The gradient floWGF) regime occurs foe<0.06(see text C(i,j) :W' (7)

I 1

precisely as in atmospheric gradient flows, where the wind
velocity V displays the same dependence ondkestrophic  wherei and j label different sites on the lattice an()

wind vy, namely[1,3], represents the time averageXf
- s Figure 4 shoyv;_the spa_ti_al wavelength as a functiory of
Ve +(f_R+va ) B f_R ©6) for a set of 50 initial conditions. The wavelength reaches a
|\ 4 9 2’ maximum of nearly eight sites for a certain interval about

v=0 and decreases when advection is further increased, re-
wheref is the Coriolis parameter aridis the radius of cur- maining, however, nearly constant inside certgimtervals.
vature. From Figs. () and Zc) one also sees that./|y| in Due to an increase in the propagation velocity, the phase
Eqg. (4) is bounded by 0.3 y./|y|<1. Therefore, values in difference measured at a given site between successive time
the lower end of this interval have the same order of magnisteps increases, leading to an increase in the quantity of
tude as the valuéR/(4v4)~0.25 corresponding to standard waves needed to ensure stability of the pattern. This increase

mesoscale analysis in middle latitudes whére10™4s 1, in the quantity of waves occurs discontinuously, producing
R~10°m, andv g~ 10m/s. “jumps” in N\, which correspond to a splitting of the wave
numberk from nto n+ 1. Thus, the net effect of an increase
V. WAVELENGTH MODULATED BY ADVECTION in the advection is to produce a decrease in the observed

wavelengths. The association of stronger advection with
In the absence of advection, traveling wave solutions apsmaller wavelengths is also true in the real atmosphere
pear to havalwaysthe same wavelengfl8,16]. In this sec- where, for example, the advection of vorticitg rather im-
tion, we show that in the presence of advection it is possiblgortant mechanism in cyclogenesiincreases with the
to change the wavelength of these solutions. square of the wave numbg21].
The possibility of predicting traveling wave solutions of  The characteristic valueg, where the wavelength splits
different wavelengths in CMLs, implies the existence of dif- from one value to another depend linearly onas may be
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FIG. 5. (a) The critical valuesy, , where wavelength transitions
occur, vary linearly with\; (b) the amplitudes’ of the vy intervals
where\ is constant are proportional 1.

FIG. 6. Wavelength plateaus characterized by constant wave-
seen from Fig. &). Figure 8b) shows that the widtld of the  lengths \;. At the roughly parabolic separatrices wavelengths
intervals where the wavelength remains constant is proporhange discontinuouslyh;>X\,>X\3>---. Here L=64 and a
tional to A2 =17.

Both quantitiesy, and é depend on diffusior. Figure 6
shows a rough illustration of, as a function of bothy and  although in the present work we concentrated on a fixed
e. The wavelength remains constant inside the parabolictattice size L =64, all results are also observed in lattices of
shaped regions and changes abruptly at the boundaries. different sizes. In fact, the spatial wavelength tends to a finite
value in the thermodynamic limit —o. A more detailed
discussion of advection is presented elsewtigfd. Among
others, two questions arise from this study, the first concern-

In conclusion, we have shown that the discretization ofing the conditions for velocity locking and the second con-
the diffusion and advection operators leads directly and quiteerning the possibility to turn periodic patterns that are cha-
naturally to a simple generalization of the standard coupledetic for the purely diffusive CML model, by adding
map lattice model. The model incorporating advection turnsadvection. These questions are treated elsew[2&ie
out to be particularly well suited for studying dynamical as- As it is not difficult to realize, the present model is now
pects of the atmosphere. For instance, in the weak diffusioready to be applied to simulations of two-dimensional lat-
regime the velocities of the patterns on the lattice are foundices having a “vertical” coordinate, in order to verify if
to be of the same order of magnitude and to have the santeaveling wave solutions governed by the advection have ve-
scaling as wind velocities of gradient flows in the atmo-locities and wavelengths lying on a range compatible with
sphere. In general, there (® a weak diffusion regime char- the corresponding ones found for atmospheric waves. The
acterized by a locking region=0 inside an interval cen- inclusion of this additional degree of freedom produces a
tered aty=0 and, outside that interval, by an exponent whole class of models sharing much in common with two-
which describes power-law behavior between the velocityevel modelq1,21,29 widely used in atmospheric forecasts,
and advection andi) a strong diffusion regime where trav- allowing, in particular, the simulation of atmosphefra8,30|
eling wave solutions have a velocity approximately equal toand oceard31] convection.
the value of advection. The latter, also characterized by
ngelike solutions, shows characteristic wavelengths in cer- ACKNOWLEDGMENTS
tain ranges of advection values.
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