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Retrieval behavior and thermodynamic properties of symmetrically diluted
Q-Ising neural networks
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The retrieval behavior and thermodynamic properties of symmetrically dilutedQ-Ising neural networks are
derived and studied in replica-symmetric mean-field theory generalizing earlier works on either the fully
connected or the symmetrical extremely diluted network. Capacity-gain parameter phase diagrams are obtained
for the Q53, Q54, andQ5` state networks with uniformly distributed patterns of low activity in order to
search for the effects of a gradual dilution of the synapses. It is shown that enlarged regions of continuous
changeover into a region of optimal performance are obtained for finite stochastic noise and small but finite
connectivity. The de Almeida-Thouless lines of stability are obtained for arbitrary connectivity, and the result-
ing phase diagrams are used to draw conclusions on the behavior of symmetrically diluted networks with other
pattern distributions of either high or low activity.
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I. INTRODUCTION

The storage and retrieval properties, as well as the dyn
ics, of large attractor neural networks have been studied o
some time and numerous results are now available. The p
ence of an exponentially large number of unwanted sp
glass-like states in fully connected networks may limit s
verely the storage capacity, the information content, and
performance, in particular, the retrieval quality of previous
stored patterns that act as attractors in the dynamics of
network. Also, the size of the corresponding basins of attr
tion may be considerably reduced. Other tasks, as the cat
rization or generalization ability of a network, are also im
paired due to the presence of such states and, except
low storage ratio that is, for a reduced level of stochas
noise, a performing network is very likely to be trapped
one of those states, preventing the occurence of finite o
laps with the patterns of interest.

The study of the equilibrium behavior of the Hopfie
model with binary neurons and extremely lowsymmetric
connectivity c @1#, suggested that except for zero stora
ratioa or in the absence of synaptic noiseT, the properties of
the model may be quite different from those of the extrem
diluted network with asymmetric synapses, which has
trivial dynamics@2#. In particular, the equations for the ord
parameters are equivalent to those of the Sherrington
Kirkpatrick ~SK! spin-glass~SG! model @3#.

It has been shown, nevertheless, that strong symm
dilution of synapses in the Hopfield model@4,5# may consid-
erably reduce the stability of spin-glass states. Indeed, in
limit c→0, the retrieval states are globally stable in th
whole domain of existence of the~a, T! phase diagram, thu
leaving only locally stable SG states@6#, in contrast to the
situation in the fully connected Hopfield model@7#. It has
also been shown that already a gradual dilution reduces
stability of the SG states in the region where they comp
with the retrieval states and that the storage capacity of
network is increased@6#. These are important results on th
performance of a network that also suggest that the basin
attraction of the memory~retrieval! states should be in
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Networks of Q-Ising neurons in various architecture

have been studied over some time, in particular, fully co
nected, layered feed forward and extremely dilute netwo
with asymmetric connectivity@8–15#. They are of interest
for possible hardware applications and an eventual biolog
modeling, because of the increased flexibility of the states
the network to account for complex neural behavior. It h
been suggested that an attractor neural network model
multistate neurons may describe the short-term memor
tion performance of theCA3 region of the hyppocampus in
both the brain of primates and in the human brain, and
sults of numerical simulations for the selective performan
of a network with asymmetric synapses and small connec
ity (c50.2) are now available@16#. However, complete
phase diagrams that give a global picture of the performa
of a network and a physical explanation of why biologic
networks seem to prefer a low connectivity are still missin
Attractor network models with a Hebbian type of learnin
rule may also serve to account for long-term memory in
brain @17#.

Both the parallel dynamics and the equilibrium propert
of extremely diluted networks with symmetric connectivi
between multistateQ-Ising neurons have been studied in r
cent works@18,19#. The symmetry of the synaptic conne
tions allows for a detailed balance assumption in the dyna
ics and enables one to perform full analytic calculations
the equilibrium properties of a network. This is particular
convenient in the search for phase diagrams. So far, there
no results, to our knowledge, concerning the memorizat
performance of symmetrically dilutedQ-Ising networks with
small but finite connectivity and low-activity patterns, whic
characterize a biological network.

The purpose of the present paper is to consider the
trieval performance of an attractor neural network mode
on some of the features of a biological network. We stu
here the equilibrium behavior of a symmetrically dilute
Hopfield model with finite connectivity and low-activity
units in Q-Ising states. Multistate networks are known
have complex properties and our main aim here is to find
©2001 The American Physical Society02-1
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how that behavior is changed by a finite dilution of the sy
apses and the low activity of the embedded patterns.
consider explicitly a Q53, Q54, and a continuous
Q5`-state network.

The outline of the paper is the following. In Sec. II, w
present the model and show how the Hamiltonian beco
the sum of an effective Hopfield-model Hamiltonian and th
of a Sherrington-Kirkpatrick-like spin-glass model. Th
replica-symmetric mean-field theory for the model and
relevant order parameters are derived in Sec. III and exp
expressions are presented in the Appendix. The results
the phase diagrams and the retrieval performance are
cussed in Sec. IV, and our conclusions with a summary of
results may be found in Sec. V.

II. THE MODEL

Attractor neural networks are dynamical systems. C
sider a network ofN neurons,i 51,...,N. At the time stept,
the state of neuroni is described by the variableSi(t), which
may be in any one of theQ-Ising states

sk5211
2~k21!

Q21
~1!

in the interval@21,1#, for k51,...,Q. A macroscopic set ofp
independent and identically distributed random patte
$j i

m ;m51,...,p; i 51,...,N%, with p5acN, is embedded in
the network by means of a Hebbian-like learning rule, spe
fied below. Here,a is the storage ratio per connected site a
c is the connectivity of the network. Every bit of each patte
may be in any one ofQ equally spaced states, also in th
interval @21,1#, which are assumed to have zero mean a
variance

^~j i
m!2&5a<1. ~2!

This is a measure of the size of the patterns, describing t
mean activity, which accounts for bits that either are turn
off or depressed.

The first task to be performed by the network is to att
a finite storage ratioa and this ratio may be optimized fo
patterns of a given size by means of an appropriate tunin
the states of the network, discussed below. The second a
to reach a sufficiently small Hamming distance

dH~jm,s!5N21(
i

~j i
m2Si !

2 ~3!

between the network state$Si%5(Si ,...SN) and a given pat-
tern $j i

m%, as a measure of the retrieval performance of
network. This depends on both the overlap

mm5~aN!21(
i

j i
mSi ~4!

and the dynamical activity of the network,aD

5(aN)21( iSi
2.
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We consider next the dynamics of the partially connec
model. For a given configuration$Si% of the network, the
local field acting on neuroni is given by

hi~$Si%!5(
j

Ji j
d Sj , ~5!

whereJi j
d is the synaptic coupling between neuronsi and j.

We assume that the synapses of the network are symm
cally diluted being left with afinite connectivityc ~the frac-
tion of connected neurons! that, eventually, may becom
vanishingly small. Specifically, the synapses are of
Hebbian-like form,

Ji j
d 5

ci j

acN (
m51

p

j i
mj j

m ~6!

for our nonsparse network, in whicĥ(j i
m)&50. Here,$ci j

5cji ; i , j 51,...,N% is a set of independent identically distrib
uted random variables, such thatci j 51 with probability c
and zero with probability 12c, while cii 50. Thus, the sym-
metric dilution introduces an additional randomness b
into the dynamics of the network, which becomes non-triv
even in the extremely diluted case due to feedback lo
@18#, as well as in the thermodynamics. We are interested
the following, in the case of a large connected network,
which cN is very large.

The state of each neuron is updated asynchronously
cording to a Glauber~single spin-flip! dynamics@5# in which
the transition probabilities are given by

P@Sj~ t1Dt !5sku$Si~ t !%#

5
exp$be j@skuhj~$Si~ t !%!#%

( l 51
Q exp$be j@s l uhj~$Si~ t !%!#%

, ~7!

whereb51/T is the inverse synaptic noise~temperature! and
the single-site energy,e j (suh), is given by

e j~suh!52hs1us2. ~8!

Here,u is a tuning parameter favoring local states of sm
dynamical activity. In the absence of stochastic noise,
deterministic evolution of the system follows the updati
rule

Sj~ t1Dt !5Qdyn@hj~ t !#, ~9!

whereQdyn(x) is the nondecreasing step function, for fini
Q,

Qdyn~x!5 (
k51

Q

sk$Q@u~sk111sk!2x#

2Q@u~sk1sk21!2x#% ~10!

with s052` and sQ1151`, in which Q(x)51, if x
>0, and zero otherwise. Clearly,u is a threshold paramete
since the state of neuronj assumes the valuesk given by Eq.
~1! if the local field hj is bound bysk1sk21<hj /u<sk
2-2
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RETRIEVAL BEHAVIOR AND THERMODYNAMI C . . . PHYSICAL REVIEW E 64 061902
1sk11. The width of the intermediate states with constantsk
for 1,k,Q ~that is, excluding the limiting values ofsk
561!, is given by 4u/(Q21). Thus, the width of the zero
state for the three-state network studied below is 2u. In the
limit Q→`, the input-output function becomes the piec
wise linear function

Qdyn~x!5sgn~x!minS uxu
2u

,1D , ~11!

where min(x,y) means the minimum betweenx and y. The
slope of the linear part, 1/2u, is the gain parameter of th
continuous network.

Both the locally stable states of the dynamics, as wel
the globally stable states that characterize the equilibr
thermodynamic properties of the diluted network, which f
low from the above dynamics, are described by the Ham
tonian

H52(
~ i , j !

Ji j
d SiSj1u(

i
Si

2, ~12!

where the first sum is over all distinct pairs of neurons~i,j!.
Eventually, a field-dependent termh1( ij i

1Si may be added to
generate the overlap with a specific pattern, and this will
implicitly assumed below.

We adapt next the procedure of Viana and Bray@20# for
diluted spin glasses in order to deal with the random diluti
In distinction to their case, which is that of a strongly inte
acting spin glass, we have here a diluted network with r
domness in the patterns and weak interactions between u
The latter allows for an exact truncation to the relevant or
in 1/cN that is sufficient for the mean-field calculation of th
following section.

Consider the disorder-dependent part of the Hamilton
in the exponentiated form

Gb~$Si%!5expH b(
~ i , j !

Ji j
d SiSj J . ~13!

Given a fixed set$j i
m% of patterns embedded in the networ

we first have to build up a finite connectivity between uni
That is to say, we have to find a network such that the m
of ci j is preciselyc and, to this end, we have to perform fir
an average over these random variables. The average
the random patterns, which is necessary to evaluate the
formance of the network, comes at a later stage. The c
figurational average over the set$ci j % of the n times repli-
cated functionGb($Si%) becomes

^Gb
n~$Si%!&c

5expH (
~ i , j !

lnS 11cFexpS bJi j (
a

Si
aSj

aD 21G D J ,

~14!

whereJi j denotes the value ofJi j
d for ci j 51. We are inter-

ested in dense networks, that is,c5O(1) and largecN, let-
ting eventuallyc→0 after the thermodynamic limit. For fi
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nite a5p/cN, the weakJi j 5O(Aa/cN) may be used to
expand the logarithm to next-to-leading order inJi j . Using
the law of large numbers to deal with (Ji j )

2, we obtain

^Gb
n~$Si%!&c5K expH b(

~ i , j !
Ji j

effSi
aSj

aJ L
d

, ~15!

in which the effective couplingJi j
eff is given by

Ji j
eff5

1

aN (
m51

p

j i
mj j

m1d i j . ~16!

The first term is the Hebbian synapsis of the fully connec
network with multistate patterns of activitya and d i j is a
Gaussian random variable with zero mean and a patt
independent varianceD2/N5a(12c)/N; the brackets on
the right-hand side of Eq.~15! denote an average over th
random variable. This generalizes an earlier result by So
polinsky @21# showing that dilution appears as a synap
noise.

Thus, the symmetric dilution introduces an effecti
Hamiltonian, in the largecN limit,

Heff52(
~ i , j !

Ji j
effSiSj1u(

i
Si

2, ~17!

where the first term is a sum of a Hopfield-model Ham
tonian and a kind of SK-model term. This is used in t
following section to derive the mean-field theory for th
model.

III. MEAN-FIELD THEORY

We consider now the mean-field theory for finitea and
for any connectivityc5O(1). Theaveraged free energy pe
connected site is given by

f ~b!52 lim
cN→`

1

bcN
^^ ln Zeff~b!&$d i j %

&$jm% , ~18!

with the averages first over the Gaussian noise in the syn
tic interactions and then over the pattern distribution. T
effective partition function is then given by

Zeff~b!5(
$Si %

exp~2bHeff!, ~19!

and this is used in the replica method to perform the rand
averages by means of

^^ ln Zeff~b!&$d i j %
&$jm%5 lim

n→0

1

n
~^^Zeff

n ~b!&$d i j %
&$jm%21!.

~20!

The essential point is then the calculation of the avera
replicated partition function. Assuming, as usual, that a fin
number of patternsj i

n is condensed, with finite overlaps wit
the state of the network, we perform the random noise a
age and sum over the uncondensed patterns to obtain
2-3
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^^Zeff
n ~b!&$d i j %

&$jm%5 (
$Si

a%

expH D2b2

N (
a,b

S (
i

Si
aSi

bD 2J
3E )

a

AbNdma
n

A2p

3expH 2
bN

2 (
a

~ma
n !21npbFJ

3K expH b(
i ,a

@ma
n j i

nSi
a

2u~Si
a!2#J L

$j i
m%

, ~21!

where the sum over$Si
a% counts the configurations for a

possible replicasa. The dilution appears only in the firs
factor and

exp~bnpF!5 )
m.1

K expH b

2N (
iÞ j

(
a

Si
aSj

aj i
mj j

mJ L
$j i

m%

~22!

is the average over the uncondensed patterns.
For both the calculation of the functionF and the linear-

ization of the quadratic form in the dilution term, we intro
duce the replica matrix elements

qab5Qab[
1

N (
i

Si
aSi

b if aÞb, ~23!

of the SG order parameter and

q̃a5Qaa , ~24!

which is the dynamical activityaD of the network. The latter
is one only in the case of binary units and, in general,qab
<q̃a<1. In the thermodynamic limitN→`, we obtain@22#

nbG52 1
2 tr ln~12bq!2 1

2 btr q, ~25!

whereq is the matrix of elementsqab and q̃a . Introducing
as usual the overlap parameterr ab associated to the correla
tion between the overlaps of the patterns that do not c
dense, we restrict ourselves to replica symmetry, in whic

mn5ma
n , ~26!

q5qab , ~27!

aD5q̃a , ~28!

r 5r ab . ~29!

The free energy per connected site, in the thermodyna
N→` limit, then follows as
06190
n-

ic

f ~b!5
a

2 (
n

~mn!21
ac

2b F ln~12x!1
x

12x
1

qbx

~12x!2G
1a~12c!S x2

4b
1

qx

2 D
2

1

b K E Dz ln(
$S%

exp~bHeff!L
$jn%

, ~30!

whereDz5dzexp(2z2/2)/A2p is a Gaussian measure, an
x5b(aD2q), given byb( i(^Si

2&2^Si&
2)/N, is the suscep-

tibility of the network. The new site-independent effectiv
HamiltonianHeff , is given by

Heff5SS (
n

mnjn1Aarcz2 ũSD , ~31!

in terms of which the thermal averages are defined as

^Sn~z!&5
($S%S

n exp~bHeff!

($S% exp~bHeff!
. ~32!

Note, incidentally, that the explicit term ina(12c) in the
free energy comes from the variance of the Gaussian ran
noise due to the dilution.

The order parameters that describe the performance o
network are given by the saddle-point equations

mn5
1

a K jnE Dz^S~z!&L
$jn%

, ~33!

q5 K E Dz^S~z!&2L
$jn%

, ~34!

and the susceptibility becomes

x5
1

Aarc
K E Dzẑ S~z!& L

$jn%

, ~35!

in which ^S(z)&, for a given Gaussian noisez is given by Eq.
~32!. Noting that the effective HamiltonianHeff is formally
the same as either that of the fully connected or the
tremely diluted network, with a different stochastic Gauss
noise and different effective thresholdũ, for each connectiv-
ity c, our equations formn ,q, andx will be formally similar
to the equations for both these networks, and explicit exp
sions are given in the Appendix.

The parameterr follows from the algebraic saddle-poin
equation

r 5qF 1

~12x!2 1
12c

c G , ~36!

and

ũ5u2
ax

2 F11
cx

12xG , ~37!
2-4
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RETRIEVAL BEHAVIOR AND THERMODYNAMI C . . . PHYSICAL REVIEW E 64 061902
is the effective width of the intermediate states. Eventua
depending on the state of the network specified by the
namical activityaD and the SG order-parameterq, ũ may
become negative, favoring an order with large absolute
ues forS. Whenever this is the case, the network acts, at z
temperature, as a binary network with zero threshold, as
be seen below. The combination(nmnjn1Aarcz, in which
the second term is the Gaussian noise due to the macros
number of uncondensed patterns, may be viewed as an e
tive random field that will influence the network perfo
mance through a competition with the effective thresholdũ.

Having performed the thermodynamic limit, one may no
allow anyvalue for the connectivity within 0<c<1, includ-
ing the limit c→0. It may easily be seen that one recove
for f (b) both the mean-field free energy for the fully co
nected network whenc51 @15# and that for the extremely
dilute case, whenc→0 @19#. In this limit, rc5q and ũ5u

2ax/2, whereas forc51, we haver 5q/(12x)2 and ũ
5u2ax/2(12x), also in agreement with the known re
sults. These relations are valid for any temperature param
1/b. Thus, we have the complete form for the replic
symmetric free energy for arbitrary connectivity.

Note, incidentally, thatrc5q not only in the above limit
but also fora50, in theb→` limit, for any connectivityc,
~that is, for any architecture! and for allQ, and this is based
on x→0 in that limit. Otherwise, the susceptibility remain
finite, even at zero temperature, sinceq→aD , when b
→`, while at finite temperature we have, in general,q
<aD .

The limit of stability of the replica-symmetric solutio
comes from the study of quadratic fluctuations of the f
energy in the vicinity of the symmetric saddle point. Follow
ing the de Almeida and Thouless~AT! analysis@23#, we ob-
tain

arcb2

q K E Dz@^S2~z!&2^S~x!&2#2L
$jn%

<1, ~38!

as the stability condition for the replica-symmetric solutio
This equation is to be solved together with the saddle-p
equations for the order parameters.

The formal results obtained so far are valid for any fin
number of condensed patterns with finite overlaps with
state of the network. We are mainly interested in this pape
the retrieval performance with a single condensed patt
and this will be discussed in the following section.

IV. RETRIEVAL AND THERMODYNAMIC PROPERTIES

For the retrieval of a single condensed pattern, sayj1, we
havemn5mdn1 , and omit the index one from now on. W
consider separately the results forQ53, Q54, andQ5`
that follow by solving the saddle-point equations and rest
ourselves to the simplest case of uniformly distributed p
terns.
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A. The three-state network

In the Q53 case, the patterns take the values61 with
probability a/2 and 0 with probability (12a), in which a
52/3 in the case of uniformly distributed patterns. The
fective transfer functionSb(h,ũ)5^S(z)& that follows from
the average in Eq.~32! is given by

Sb~h,ũ !5
sinh~bh!

1
2 exp~bũ !1cosh~bh!

, ~39!

which becomes

S`~hs ,ũ ![ lim
b→`

Sb~hs ,ũ !5sgn~hs!Q~ uhsu2 ũ !, ~40!

in the zero-temperature limit. Clearly, whenũ,0, the net-
work acts as a binary network atT50.

In the cases of the fully connected@15# or the extreme
symmetrically diluted network@19#, explicit closed form ex-
pressions that signal the appearance of either a retrieval
spin-glass phase, at zero temperature, have been obtain
the ũ→0 limit when ũ<0. These are particularly useful t
understand the low-threshold behavior of the phase
grams. In the present case of a network with finite and l
than complete connectivity, closed form expressions for
onset of the ordered phases cannot be obtained and on
to resort fully to numerical solutions.

Nevertheless, the zero-temperature behavior of the t
modynamic transition may be easily analyzed as in previ
works, to demonstrate that the retrieval state correspond
the most stable phase, despite the presence of a spin-
and a paramagnetic phase~which is a frozen zero-spin state!.
Indeed, the physical free energy,f 52 f (b) at zero tempera-
ture becomes

f 52
a

2
m22

a

2
xrc1 ũrc. ~41!

Since the susceptibility vanishes in thea→0 limit when T
50 for any of the three phases, and at the same timerc
→q, the retrieval free energy is the minimum wheneveru
<1/2. Note that the susceptibility of the paramagnetic pha

x5
2b

exp~bũ !12
, ~42!

also vanishes in the zero-temperature limit for finitea andũ
converging tou, ensuring a minimum retrieval free energ
for small a.

Although much emphasis is often made on the thermo
namic transition to globally stable retrieval states, whi
have the lowest free energy, it is worth keeping in mind th
neural networks are dynamical systems with accessiblelo-
cally stable retrieval states, in particular, in the presence
some amount of noise. As far as the performance of
2-5
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network is concerned, these are the most interesting s
and they usually appear for higher values ofa @5#.

We are interested here in the characteristic features of
phase diagrams and the specific performance of the netw
To see the effects of a gradual change in the connectivity,
show in Fig. 1 the~a, u! phase diagrams forT50. The full
lines represent the phase boundaries where the locally s
retrieval states appear at the critical storage ratioac ,
whereas the long-dashed lines indicate the thermodyna
transitions to the globally stable retrieval phase. The
phase appears to the left of the short-dashed lines repre
ing the boundary to the paramagnetic state. To distinguis
what follows the transitions involving locally stable stat
from the thermodynamic transitions, we refer to the form
simply as retrieval transitions. As long as the connectiv
remains finite, all the transitions are discontinuous and
usual in connected networks, the SG state is globally sta
only above the thermodynamic transition@7#.

Consider first the case of the fully connected netwo
with c51, which has been redone and completed here for
purpose of comparison. There are two retrieval regions, I
II for small a, separated by a sharp phase boundary, and
is the case both below and above the thermodynamic tra
tion. The first is a region of nonoptimal performance char
terized by a moderately large Hamming distance that
creases with increasingu, whereas in region II, the Hammin
distance is small, dropping discontinuously at the ph
boundary between the two regions with optimal network p
formance along the dotted line.

The situation should change with decreasing connectiv
even at zero temperature. Due to the synaptic noise prod
by the dilution, given by the varianceD2/N5a(12c)/N,
one now expects an end to the discontinuous transition
tween the retrieval regions I and II at ac-dependent critical

FIG. 1. Phase diagram~a, u! for the Q53 state network with
uniformly distributed patterns and connectivityc as shown, atT
50. The full and the long-dashed lines represent the retrieval
the thermodynamic transition, respectively. The latter ends on
right at the ~dotted! optimal performance line and the spin-gla
phase appears at the left of the paramagnetic phase boundary
cated by the short-dashed lines. The two retrieval regions I an
are discussed in the text and the inset corresponds toc50.63,
where the distinction between these phases starts to disappea
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point for finite a, below ac . This starts to appear forc
.0.63, withu.0.325 anda.0.0282, as shown in the inse
of the figure for the retrieval transition. A critical point als
appears at the thermodynamic transition and in Fig. 1,
show the results forc50.5 andc50.25. There may now be
a continuous transition with increasingu induced by stochas
tic noise between the nonoptimal and optimal performa
retrieval states above the critical point suggesting the p
ence of increasingly larger regions of continuous chang
The interesting point is that this is a feature that alrea
starts to appear for finite andintermediateconnectivity, be-
tween that of the fully connected network and thec→0
limit.

To understand the role of the threshold, one may use
guide the case of vanishing stochastic noise, witha→0.
When u is small, the state of a unit will be essentiallySi

561, with an overlapmI
m5(aN)21( i uj i

mu51 in region I
for uniformly distributed three-state patternsj i

m , which take
the values21, 0, and11. Sinceq51, the Hamming distance
in this region will bedH(I )51/3. On the other hand, asu
becomes larger, the stateSi50 becomes increasingly impor
tant and, despite the fact thatSi5j i

m also yields an overlap
mI

m51, the SG order parameterq is now reduced to the
activity 2/3. Thus, the resulting Hamming distancedH(II )
will be vanishingly small. Note that these results do not d
pend on the connectivity and they are, therefore, indepen
of the architecture of the network. This also follows from t
zero-temperature saddle-point equations as can easily
checked in the Appendix. In the case of a finite nonze
stochastic noise, instead, the performance of the network
comes explicitly dependent on the connectivity, but the ov
all qualitative dependence onu below the critical phase
boundaries is expected to follow that ata50.

The critical storage capacity now increases with decre
ing connectivity and the presence of two compara
maxima forac is only a feature of intermediatec. Indeed, as
the synapses are further diluted, a single maximum is l
albeit with a shift to higher values ofu. Finally, it is also
worth noting that, in thec→0 limit, the retrieval state is the
globally stable phase everywhere below the criticalac line
and to the left of the globally stable paramagnetic pha
despite the relatively large stochastic noise due to the p
ence of spin-glass states in most of this region.

The zero-temperature results presented so far are
stable to replica-symmetry breaking perturbations but it
expected that most of the features described here will
present at an already small but finite temperature above
AT line, shown as dash dotted in Fig. 2, foru50.2. The full
lines again represent the transitions to the locally stable
trieval states and the thermodynamic transitions are
shown. Note that, even for small connectivity, there is onl
low synaptic-noise region in which the network is not stab
to replica-symmetry breaking perturbations. For a largeu
50.5, we expect a similar behavior for the transition to t
locally stable retrieval state with decreasing connectivity
that found before for the fully connected network, but s
quite different from the behavior for loweru @15#.
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FIG. 2. Stable phase diagram to the right of the de Almei
Thouless~dot-dashed! line in the (a,T) plane for theQ53 state
network with uniformly distributed patterns,u50.2 and connectiv-
ity c as shown. The full lines represent the retrieval transition.
.
the

06190
B. The four-state network

In the case ofQ54, the phase diagrams are more i
volved. The patterns are assumed to take the values61 with
probability ã/2 and 61/3 with probability (12ã)/2, in
which ã5(9a21)/8, wherea55/9 for uniformly distributed
patterns. We consider in the following the zero-temperat
behavior of the network and begin with the fully connect
case as a guide. We recover precisely the retrieval ph
boundaries found before@15#.

Similar results with exclusively sharp phase boundari
between now enlarged ordered regions, are found for so
what lower connectivity, as shown in Fig. 3~a! for c50.5.
For low a, we find three different ordered retrieval ferroma
netic phasesFM3D , FM1 , andFMD , in a previous notation
@15# and characterized below, separated by discontinu
phase boundaries and in whichD52/5 for uniformly distrib-
uted patterns. Asa increases, these phases disappear disc
tinuously at the critical phase boundariesac into the SG
phase. The three phases correspond to possible locally s
states that become globally stable at the thermodynamic t
sition for lower a, not shown in the figure for simplicity
Which of the locally stable states is actually reached in

-

s. The

FIG. 3. Phase diagram~a, u! for theQ54 state network with uniformly distributed patterns and connectivity~a! c50.5, ~b! c50.48,~c!

c50.1, and~d! c50.01, atT50. The full lines represent retrieval transitions and the optimal performance is indicated in dotted line
central region is the best performance phaseFM1 and there is a low-a coexistence region between phasesFM3D andFM1 .
2-7
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dynamic evolution of the network will depend, as usual,
their basins of attraction and the choice of the initial stat

One may consider four regimes in thea→0 limit. First,
whenu is small, that is within the phaseFM3D , mainly the
high activity states are favored withSi5sgn(ji) with an over-
emphasized overlapm56/5; the spin-glass order paramet
and the Hamming distance becomeq51 anddH52/9, re-
spectively. For larger and intermediateu, there should be a
phase, calledFM1 , characterized by states of the netwo
that follow essentially the patterns, withSi5j i and an over-
lap given by m51, the spin-glass order parameterq5a
55/9 and a vanishing Hamming distance. Between the sm
and the intermediateu regimes, there could be a coexisten
region of the phaseFM3D with the phaseFM1 where the
states of the network start to recognize the full structure
the patterns. Finally, there should be a phase characterist
the largeu regime in which mainly the intermediate stat
with Si5(1/3) sgn(ji) are activated leading to a performan
with m52/5, q51/9, and againdH52/9. This is the phase
FMD , which should have an overlap with the phaseFM1 at
intermediateu. These expectations have been confirmed
means of the solutions to the saddle-point equations in
a→0 limit and some of the results may be found in earl
work @15#. The four regimes are given byu,1/4, 1/4,u
,3D/4, 3D/4,u,3/4, and 3/4,u. They do not depend on
the connectivity and are therefore independent of the ar
tecture of the network, in accordance with earlier results
ther on the fully connected or the extreme symmetrica
dilute network@15,19#.

On the other hand, we confirm the symmetry of the li
iting ac for u→` and for u50, in accordance with earlie
results@15#. We also find that the optimal performance lin
appears within theFM1 phase and that the network has
relatively high performance with a small Hamming distan
in that phase, with an overlap at the critical phase bound
that is 0.8 of that ata50.

When the connectivity is reduced toc.0.48, the distinc-
tion between the phasesFM3D andFM1 starts to disappear
as shown by the enlarged gap in Fig. 3~b!, allowing for a
continuous change into the high-performance phase for in
mediatea. Note that there is still a discontinuous pha
boundary between the phasesFM3D andFMD and that the
presence of this phase boundary is important in order to
hibit the transition to the low performance phaseFMD .

Furthermore, we still find four regimes for lowa and that
the three main retrieval phases,FM3D , FM1 , and FMD ,
end discontinuously at the critical phase boundaryac . The
optimal performance line is still purely within theFM1
phase, as in the previous case, and the network has a
performance up toac , with an overlap close to one on th
phase boundary, foru around 0.5.

As the connectivity is further decreased toc50.1, we find
the phase diagram shown in Fig. 3~c! with the three main
retrieval phases that disappear discontinuously atac and the
four low-a regimes discussed above. The distinction betw
the phasesFM3D andFM1 disappears now at lowera and
the optimal network performance in the central phaseFM1
may be reached continuously within a considerable rang
06190
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a from theFM3D phase. As in the previous cases, there i
coexistence region between the phasesFM3D and FM1 ,
now only for smalla. Moreover, there is no need now for
specific choice of threshold parameteru in order to access
most of the high-performance domain of the network. In
dentally, note that the continuous retrieval phase bound
for the common phaseFM3D and FM1 is similar to that
found for the fully connected network with pattern activi
a57/9 @15#. We have no further insight, at present, of th
feature.

Finally, in order to check the overall simplification of th
phase diagrams that appears with decreasing connectivity
also present results forc50.01 that are shown in Fig. 3~d!.
The phase boundaries are still lines of discontinuous tra
tions and the distinction between the four regimes is
stricted to even lower values ofa. There is now a consider
ably larger region of continuous changeover from the ph
FM3D to the phaseFM1 , with access to optimal perfor
mance, without the need of a fine adjustment inu.

C. The continuous response network

In the case ofQ5`, we again consider uniformly distrib
uted patterns between21 and 1, implying thata51/3, and
restrict the results to the zero-temperature case. The dis
tinuous transitions to the ordered phase are shown in
lines in thea2u phase diagram for decreasing connectiv
in Fig. 4, where we omit again the thermodynamic tran
tions and the long-dashed lines indicate now the onset of
binary-network behavior. Note that the disappearance of
ordered phase takes place atu51/2 for any finite connectiv-
ity, as in the case of the fully connected network and
networks of different architecture, like the extremely asy
metric diluted and theQ-Ising layered network@15,13,14#. In
the case of the extremely diluted networks, the retrie
phase boundaries have a re-entrance foru>1/2 @19#. This
seems to be a feature of thec→0 limit, as one can see from

FIG. 4. Phase diagram~a, u! for the Q5` state network with
uniformly distributed patterns and connectivityc as shown, atT
50. The full lines represent retrieval transitions, the optimal p
formance is indicated in dotted lines, and the onset of the bin
network is shown by long-dashed lines. The phases are stable t
right of the de Almeida-Thouless line~dot-dashed!.
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RETRIEVAL BEHAVIOR AND THERMODYNAMI C . . . PHYSICAL REVIEW E 64 061902
our further results for the connectivity dependence of
maximum storage capacityamax and the correspondingumax,
both shown in Fig. 5.

As in the case of both the fully connected and the sy
metrical extremely diluted network, and in contrast with t
Q53 state network, we find that even at zero temperat
most of the retrieval regions for differentc are stable to
replica-symmetry-breaking perturbations, that is foru above
the AT lines. This includes the maximum storage capac
and it follows from a positive replicon eigenvalue for th
case obtained from Eq.~38!,

lR512
arc

4qũ2
K E

umj1Aarczu<2ũ
DzL

$jn%

512
arcx

2qũ
,

~43!

wherex is the susceptibility for the continuous network pr
sented in the Appendix. The AT line is given bylR50 and,
again, in both thec51 and thec→0 limit, in which rc
5q, this result coincides with that for the fully connecte
and the symmetrical extremely diluted network@15,19#.

V. SUMMARY AND CONCLUDING REMARKS

We derived in this paper, the replica symmetric mean-fi
theory for Q-Ising attractor networks with low-activity pat
terns and arbitrary symmetric dilution of the synaptic co
nections. We extended earlier studies on the retrieval be
ior and thermodynamic properties of either fully connec
or symmetrical extremely dilutedQ-Ising neural networks
with low-activity patterns, in order to study the effects of
gradual dilution of the synaptic connections guided by
motivation that neurons in biological networks of associat
memory are neither fully connected nor very sparsely link
to other neurons. We are mainly interested in the nature
the phase transitions to locally stable retrieval states an
the role that synaptic dilution has in either reducing or d
stroying sharp transitions motivated by the plasticity of b

FIG. 5. Connectivity dependence for the maximum storage
pacity amax and the correspondingumax in the Q5` state network
with uniformly distributed patterns atT50.
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logical networks. In the context of the networks studied he
we focus mainly on the dependence of the retrieval prop
ties on the threshold or gain parameteru for decreasing con-
nectivity c and ask to which extent can a network go from
given locally stable retrieval state to a nearby hig
performance state without crossing phase boundaries of
continuous transitions.

In order to answer that question, one has to look for
propriate phase diagrams that were obtained here in rep
symmetric mean-field theory. Since deviations from th
theory are very small and appear only in a small region n
T50, we may still draw relevant conclusions from tho
diagrams. The explicit phase diagrams obtained in this pa
apply to uniformly distributed patterns and to networks w
arbitrary symmetric dilution. The behavior of both the ful
connected and the extremely diluted network are recove
when c51 and c→0, respectively, in that our genera
saddle-point equations become identical to those for ei
case that have been obtained before@15,19#.

We find that common features of thea→0 limiting be-
havior in either fully connected or symmetrical extreme
diluted networks also appear for arbitrary finite connectiv
c. This confirms the expectations of earlier works th
pointed out the architecture-independent nature of so
properties@15,19#. Among these is the particularu50.5,
where the thermodynamic transition ends in theQ53 state
network and where the optimal performance takes place
low a, both for T50. The common limitingT in the ~a, T!
phase diagram for varyingc is a further property of this kind,
as well as the four distinct domains in theQ54 state net-
work and theu50.5 limiting threshold for theQ5` net-
work at a50.

The main dependence of the behavior of the network
the connectivity arises for finitea. For both odd and evenQ,
we find that a common feature that appears with an incre
in the dilution of the synaptic connections is to suppre
selected sharp phase boundaries of discontinuous transi
that make the optimal performance domain readily access
to a wide region of low-threshold locally stable retriev
states. Note that, on the other hand, the sharp boundary
theQ54 state network between the low-performance pha
FM3D andFMD survives synaptic dilution, at least to quit
an extent. These features of the network for small but fin
connectivity appear long before the extremely diluted lim
and they should be of considerable interest.

Concentrating, for simplicity, on theQ53 state network,
we also found that the boundaries between thermodyna
transitions are suppressed by an increase of the synapti
lution, and expect a similar behavior for theQ54 state net-
work.

The results of our paper may be used to infer the beha
of other networks. Since the fully connected network
strongly sensitive to pattern activity, one may consider ot
than uniformly distributed patterns@15#. There are, essen
tially, two kinds of phase diagrams in that case about wh
we can make definite predictions. One is the type of ph
diagram for patterns of relatively large activity that h
mostly a decreasing phase boundary with increasingu and an
optimal performance line that appears only at smallu. The

-
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other type, which appears for medium or small pattern ac
ity, has an optimal performance only at intermediateu, such
as the cases shown in Fig. 3, and both types appear foQ
53 andQ54, while only the first type seems to appear f
Q5`. We expect that the main effect of a finite synap
dilution on the first type of phase diagram is simply to sh
the retrieval phase boundaries upwards towards a largerac .
In the second type of phase diagrams, however, we ex
also a disappearance of the discontinuous phase boun
between theFM3D andFM1 phases, in essentially the sam
way we found in the present work, allowing for a smoo
changeover from states of nonoptimal to those of optim
performance.

The main result of this paper, that partially connect
multistate Hebbian networks may attain near-optimal per
mance without a fine tuning of neuron activity may be
simplified statistical-mechanics explanation of why biolo
cal memory networks seem to prefer low-activity patte
between partially connected neurons. Of course, biolog
networks have asymmetric synaptic connections that m
lead through a dynamic evolution to different stationa
states, the search of which is certainly an interesting is
that deserves a separate investigation, currently in progr

The study of the effects of symmetric synaptic dilutio
may be extended to other problems that deal with associa
memory, like the categorization problem as a classificat
task in Q-Ising networks@24#. This has been done recent
for Q52 @25# and there is work in progress for generalQ
@26#.
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APPENDIX

We present here, for completeness, the explicit exp
sions for the saddle-point equations obtained for the s
metrically diluted network with arbitrary connectivityc and
uniformly distributed patterns, forQ53, Q54, andQ5`.

For Q53, taking patterns61 with probabilitya/2 and 0
with probability (12a) we have

m5E DzSb~m1Aarcz,ũ !, ~A1!

q5E Dz@aSb
2~m1Aarcz,ũ !1~12a!Sb

2~Aarcz,ũ !#,

~A2!

x5
1

Aarc
E Dzz@aSb~m1Aarcz,ũ !

1~12a!Sb~Aarcz,ũ !#, ~A3!
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with Sb(h,ũ) given by Eq.~39!. These equations reduce t
the equations for the extreme symmetrically diluted netwo
as well as for the fully connected network, in thec→0 limit
andc51, respectively. The same applies for the cases oQ
54 andQ5`, presented below.

In the zero-temperature limit (b→`), the integrations
over the Gaussian variablez may be done explicitly. In the
Q53 case, we obtain, forũ>0,

m5
1

2 FerfS m1 ũ

A2arc
D 1erfS m2 ũ

A2arc
D G , ~A4!

q512
a

2 FerfS m1 ũ

A2arc
D 2erfS m2 ũ

A2arc
D

1~12a!erfS ũ

A2arc
D G , ~A5!

x5A 1

2parc
Fa expS 2

~m1 ũ !2

2arc
D 1a expS 2

~m2 ũ !2

2arc
D

12~12a!expS 2
ũ2

2arc
D G , ~A6!

with the relation betweenr, q, andx given by Eq.~36!.
For theQ54 state model, with states and uniformly di

tributed patterns that take the values21, 21/3, 11/3, and
11, a55/9 and we obtain

m5
9

10E DzFSb~m1Aarcz,ũ !1SbS m

3
1Aarcz,ũ D G ,

~A7!

q5
1

2 E DzFSb
2~m1Aarcz,ũ !1Sb

2 S m

3
1Aarcz,ũ D G ,

~A8!

x5
1

2Aarc
E DzzFSb~m1Aarcz,ũ !

1SbS m

3
1Aarcz,ũ D G , ~A9!

where

Sb~h,ũ !5
sinh~bh!1 1

3 exp~8bũ/9!sinh~bh/3!

cosh~bh!1exp~8bũ/9!cosh~bh/3!
.

~A10!

In the zero-temperature limit

S`~h,ũ !5sign~h!@112u~ uhu24ũ/3!#, ~A11!

and the above equations yield, for positiveũ,
2-10
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m5
3

10FerfS 3m14ũ

3A2arc
D 1erfS 3m24ũ

3A2arc
D 1erfS m

3A2arc
D G

1
1

10FerfS m14ũ

3A2arc
D 1erfS m24ũ

3A2arc
D

1erfS m

3A2arc
D G , ~A12!

q512
2

9 FerfS 3m14ũ

3A2arc
D 2erfS 3m24ũ

3A2arc
D 1erfS m14ũ

3A2arc
D

2erfS m24ũ

3A2arc
D G , ~A13!

x5
1

3A2parc
FexpS 2

~3m14ũ !2

18arc
D 1expS 2

~3m24ũ !2

18arc
D

1expS 2
m2

2arc D1expS 2
~m14ũ !2

18arc
D

1expS 2
~m24ũ !2

18arc
D 1expS 2

m2

18arc D G , ~A14!

Finally, in the zero-temperature limit forQ5` and uni-
formly distributed patterns between21 and 1, implyinga

51/3, we obtain forũ>0,
,

s.

t.

06190
m5
3

2
E

21

11

djjF S 11
mj

2ũ
D erf@B~m!#1

1

ũ
Aarc

2p

3exp@2B2~m!#G , ~A15!

q511
1

2
E

21

11

djF S arc1~mj!2

~2ũ !2
21D erf@B~m!#

1
1

ũ
Aarc

2p S mj

2ũ
21D exp@2B2~m!#G , ~A16!

x5
1

4ũ
E

21

11

dj erf@B~m!#, ~A17!

where

B~m!5
2ũ1mj

A2arc
, ~A18!

and these integrations can be performed directly.
ral
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@18# D. Bollé, G. Jongen, and G. M. Shim, J. Stat. Phys.96, 861
~1999!.
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