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Unified formulation for inhomogeneity-driven instabilities in the lower-hybrid range
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A local dispersion relation that describes inhomogeneity-driven instabilities in the lower-hybrid range is
derived following a procedure that correctly describes energy exchange between waves and particles in inho-
mogeneous media, correcting some inherent ambiguities associated with the standard formalism found in the
literature. Numerical solutions of this improved dispersion relation show that it constitutes a unified formula-
tion for the instabilities in the lower-hybrid range, describing the so-called modified two-stream instability,
excited by the ion cross-field drift, including the ion Weibel instability, and also describing the lower-hybrid
drift instability, which is due to inhomogeneity effects on the electron population.
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I. INTRODUCTION hand, the usual dispersion relation derived with use of the
relationship between current density and electric field could
The plasma of earth’s magnetosphere offers plenty of posdescribe the MTSI/IWI(ion Weibel instability, but failed to
sibilities for the excitation of waves that may feed on the freeobtain the LHDI[13].
energy available due to inhomogeneities. In the magnetotail, Taking into account this situation, and aiming to formu-
drift instabilities may play an important role as the energylate a unified and consistent local theory for these
dissipation mechanism. The electron density, magnetic fieldnhomogeneity-driven phenomena, we have recently derived
and temperature gradients are known to drive the so-called rather general expression for the electron linear dielectric
lower-hybrid drift instability(LHDI) [1-7], while the cross- response function, which can be readily utilized in the sta-
field drift of the unmagnetized ions drives the modified two- bility analysis of weakly inhomogeneous mediat]. Such a
stream instabilit MTSI) [8—12]. In general, both instabili- result is a culmination of a series of earlier efforts in which
ties may be simultaneously present in the magnetotail. inhomogeneous plasma parametgt5—2Q and inhomoge-
The standard formalism found in the literature usuallyneous magnetic fielt21—-23 have been discussed. The deri-
employs a local approximation to discuss these instabilitiesyation of the general expression is based on an iterative
treating the inhomogeneity as adiabatic. However, such amethod termed “the BGI procedure,” after Beskin, Gurev-
approximation contains some inherent ambiguities. A relaich, and Istomin who pioneered such a method. This proce-
tively detailed description of these ambiguities can be foundiure was developed in order to ensure that the absorption
in a paper by Yoon, Lui, and Chang 1994, where an unsuceoefficient obtained from the solution of the dispersion rela-
cessful attempt toward a unified description of instabilities intion is related to an effective energy exchange between
the lower-hybrid range has been mdd8]. In Ref.[13] the  waves and particlef24], which the adiabatic local theory
strongly electrostatic nature of the LHDI has been taken intaloes not.
account by using Poisson’s equation and the relationship be- In the present paper we derive a proper dispersion rela-
tween charge density and electric field to obtain some of théion, taking into account the relevant inhomogeneity effects,
components of the dielectric tensor, taking into account inand use with this dispersion relation the components of the
homogeneity effects, while Ampere’s law and the relation-dielectric tensor obtained with the general formalism de-
ship between current density and the electric field was useslcribed in Ref[14], particularized to the case of drift insta-
for other components. This hybrid formulation has been ablilities in the lower-hybrid frequency range, for propagation
to describe the LHDI, but could not be used to describe thén the plane perpendicular to the direction of the inhomoge-
MTSI in the limit for parallel propagation. On the other neity gradients. It is found that the resulting dispersion rela-
tion offers an unified description of both the LHDI and the
MTSI, and also describes the so-called IWI, a purely grow-

*Email address: omar@if.ufrgs.br ing instability that appears for purely parallel propagation.
"Email address: ziebell@if.ufrgs.br Such unified description was not yet available in the litera-
*Email address: rudi@ufpel.tche.br ture, to the best of our knowledge.

$Email address: yoonp@ipst.umd.edu The structure of the paper is the following. In Sec. Il we
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z dius (L,>r e, Wherer (=v./|Q|), the electrons distribu-
1 tion can be given by the following approximated form
F (o, ) =X~ 2 e )
B(x elU, ) =Tg(X,V)— — (X,v
| ( )l rF B(I) |Qe| dIX
Upel
=| 1+ V225 y)fe(x,v),
Ue
n(x) Yy fo(X v):ﬂex _v_2
ST (2w 202)’
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x Vp; —_— wherev=+Te/m, is the electron thermal speed, being
V. the electron temperature, ang.= e,v2/\2|Q| is the elec-

FIG. 1. Schematic representation of the inhomogeneous profiIeTs!’on d|amagnetlc drift spe_ed. .
of magnetic field and density in the slab geometry, indicating the The ions can be considered as unmagnetized for waves

orientation of the electron and ion drift velocities. characterized by the inequalitiee> () andr ;>\, where
w is the wave angular frequenc{); is the ion cyclotron

describe the model of the inhomogeneous region and writ@ngular frequency;,; is the ion Larmor radius, an is the
down the final expressions for the components of the dielecvavelength. Therefore, it is not necessary for us to use for
tric tensor to be used in the dispersion relation. In Sec. Il wehe ions the expression developed in Ré#], but instead
establish the appropriate dispersion relation that incorporaté¥e may simply treat the ion distribution as a drifting Max-
the relevant inhomogeneity effects. In Sec. IV we conduct avellian,

series of numerical analyses of the dispersion relation, con-

sidering parameters relevant to the case of earth’s magneto- o n(x) U)2(+(vy+vDi)2+U§
tail. Finally, some comments on the results obtained appear i a2 38R T 2 ,
. (277) ZUi 2Ui
in Sec. V.
where v;=+T;/m; is the ion thermal speed andp;
Il. MODEL OF THE INHOMOGENEOUS REGION AND =ew2(\2Q) is the ion (diamagnetig cross-field drift
THE COMPONENTS OF THE DIELECTRIC

speed. This distribution function for the unmagnetized ions
TENSOR allows for simplicity in the description of the ion contribu-

Let us consider a slab of magnetized plasma, with magtion for the dispersion relation, while featuring the cross-field
netic field pointing along the direction, featuring inhomo- drift movement that is the driving mechanism for the MTSI

geneities in magnetic field and density, along tigirection,  instability.

with the following profiles: We now consider the case of propagation in ylzeplane,
which is the plane perpendicular to the direction of the inho-
B(X)=Bg(1+ egX)e,, mogeneity gradients, and frequencies in the vicinity of the
lower-hybrid frequency, which means that the only important

N(X)=ng(1l—€pX), (1)  contributions are those that pertain to the harmomiesO

andn==*=1 in the electron response functions.
where n(x) represents the equilibrium electron density at The dielectric tensor is given by
positionx, assumed to be equal to the ion density, and where
eg=1/Lg ande,=1/L,, are inverse scale lengths that charac- E=1+y+ i, 2)
terize the inhomogeneities in magnetic field and density, re-

spectively. These profiles may represent, for instance, th@herei® corresponds to the electron dielectric susceptibility
magnetic field and density at the magnetotail of the earthiensor andy' corresponds to the same for the ions. The com-
Figure 1 is a schematic view of the slab geometry, featurinq)onems ofg® and ', given below(details of the derivation
the gradients of magnetic field and density that are Perperyppears in Appendix A include the corrections, which fol-

dicular to the ambient magnetic field, and the ion and electqoy from the above-mentioned BGI procedure, to the stan-
tron diamagnetic drift velocities, which occur due to the den-yarg expressions found in the literatusee, e.g.[13)]),

sity inhomogeneity.

In an inhomogeneous slab as we are considering the elec- 1 0 m q
tron distribution function depends o and X,=Xx Xo== _pze _'< —\2 —nng(’)(Vi)Z(Zo)
—vy/|Qe|, the space dependent constant of motion that rep- w? QF Me al
resents thex component of the guiding center position of the ~
electron cyclotron orbits. If the scale length of the density +4zof du u3e*“2Jf( V2vu)Z(z0) |,
inhomogeneity is much larger than the electron Larmor ra- 0
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for the electrons, and

et 02202
2
Xy %Q—Z 22 2(z)- (qqi —"v—fi”)zzwzo],
o= 2‘;’1‘2’:. Z(z>—22zz (z.)) @
Xey=0=X}yx:  Xka=0=xbx:
Xiyz:Xizy _izz;_rg(;” i qJZ(Zi)+(%Zi—UU—ITi)Z’(Zi) ,

for the ions, wheraw=w/wy,, w;n=(Q;|Q)? being the
lower-hybrid angular frequency);=eBy/m;,c and Q.=
—eBy/mgc being the ion and electron cyclotron frequency,
respectivelyw? = 4mnye?/m, andw?; = 4mnge?/m; are the
electron and ion plasma frequencies, respectively:

C C ck, cky
=—€p, =——¢€p, =—), =—,
an ®pe n s ®pe B q. ®pe dj ®pe
k, andk; being the parallel and perpendicular components
of the wave vector with respect to the ambient magnetic
field, respectively;H,(x)=1,(x)exp(=X), I,(X) being the
modified Bessel function of the first kind of order the
prime indicating the derivative with respect to the argument;

2.2
klvg

0z’

Ve=

. w
° \/EkHUe,

0+Qe o*|Q

= Bkwe ke

— w—nQe—kLeriuzlﬂe o+ \/EklvDi
Z,= , ZE———.
! V2kjve | V2ko;

Z(z) and Z’'(z) are the familiar plasma dispersidfried-
Conte function and its derivative, respectively.

One of the important consequences of the “BGI” correc-
tion is that the above dielectric tensor elements preserve the
correct symmetry with respect to the off-diagonal elements,
namely,

Ln=+1)=

Exy™ T €yxy  Exz— T €zxy  €yzT €zy.

Referencd13] makes note of the breakdown of this symme-
try (i.e., the Onsager symmejryn the traditional local ap-
proximation of weakly inhomogeneous plasma linear stabil-
ity problem, and attempts to correct this problem by
employing componentg,; (j=X,y,z) calculated with the
use of an approximated form of the perturbed Poisson’s
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equation. The resulting expressions for the tensor elementsith the current density being related to the wave electric
did restore the required symmetry, but it was a fortuitousfield by a constitutive relation,

happenstance rather than a result based upon first principles.

The authors of Refl13] speculated whether the breakdown

of Onsager symmetry was the result of approximated orbit J=—i E)?' E, (8)
calculation associated with the electrons. However, in reality
the problem has nothing to do with the orbits, but rather it is . . .
an inherent consequence of the local approximation, whicl’f"here forweakly_ln_homogeneous media the ten§<’)rl§_the .
in general does not satisfy the proper energy exchange rel ffective susceptibility tensor. For the geometry utilized in

tion between the particles and waves. The BGI procedur e present paper and for frequencies in th? Iower—hypriq
naturally corrects this deficiency and the Onsager symmet equency range, the components of the effective susceptibil-

relation results as a corollary, as Eg) clearly demonstrates. y_te_nsor are given by Eq3). Regard|_ng_the charge de_nS|_1y
In short, we believe that EG3) represents a more systematic °- it is also related to the wave electric field by a constitutive

and accurate formula appropriate for local linear stabilityrelat'on' However, instead of following steps similar to those

analysis of weakly inhomogeneous plasmas in the |0werytilized to obtain the constitutive relation betweé&rand E,

hybrid frequency range. for p we adopt a shortcut and use the continuity equation,
At this point, a brief overview of the BGI procedure may

be appropriate. As explained elsewh¢id,22], the proce-

dure first involves the computation of the customary expres-

sion of the local dielectric tensor on the basis of the relation-

ship between current density and electric field, butpptaining, after use of Ed8),

incorporating inhomogeneity effects. This customary expres-

sion does not satisfy Onsager symmetry. A set of remedial 1 1

prescriptions generally outlined in Re¢R4] is then applied  p(r,w)=— 4—V.[)?(k,r'a)).E]%— 4—[ik~)?+V-)?]-E.

to this preliminary form. It is important to point out that this ™ m

procedure is noad hog but is based upon firm theoretical (10

ground. The result is Eq3). The specific details have been ) ) . . )

worked out elsewherfl5,22,24. We emphazise that in Eq. Notice tha_t th_|s expressmn_for the charge density contains

(3), only the resonant particles contribute to the anti-SPace derivatives ofy), which are of the same order as

Hermitian part of the susceptibility tensor, thereby describingdradient terms taken into account in the derivation of the

correctly the energy exchange between waves and particle8usceptibility for inhomogeneous plasmas, and which are

If Landau damping is absent, the components of the susceg?erefore to be maintained in the wave equation.

tibility tensor are Hermitian. Inserting expressiong8) and (10) into Eq. (7), the out-
come is a set of algebraic equations for the wave electric
field,

p(rw) == —V-3(r,w), ©

Ill. THE DISPERSION RELATION

In order to obtain the dispersion relation appropriated to w2 w2
deal with instabilities in a weakly inhomogeneous plasma, in —E-KE=Kk-¥—i(V-\)]-E- X¥-E, (11
which we will utilize the components of the susceptibility ¢ ¢
tensor that incorporate inhomogeneity effects, as given by
Eq. (3), we start from Maxwell’s equations, take the curl of whose solubility condition is the following dispersion rela-

Ampere’s law, use Faraday’s law, and obtain tion:
1 &’E 41 9 ) . C dxj
2 — — . . —N. . L | =
_EF_V(V.EH-V E_?E' (5) de{(l N<) & + xij N|N|X|]+|N|w % 0, (12

Using Gauss’s law of electricity, this equation becomeg¥here Einstein’s sum rule for repeated indexes has been used
the following: and whereN=ck/w. _

For the situation discussed in the present paper the only
nonvanishing space derivative of the susceptibility is xhe

2
_ 1 E+V2E=47TVp+ am E (6)  derivative, which can be written as follows:
c? at? c? Jt
o o IXij
Considering now the WKB approximation fd&, J, and ox €8 Wij (13
p, EQ. (6) can be transformed into an algebraic equation
) where

0} . ArTw

— E—KE=i4mkp—i——J, (7)

c C 7xx=0,
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0.1
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X > n| duue¥zM(z,)32(\2vu), 0.08
n=x1 0 g'g;
' 0
722= 0, (14
1/2 3./2(0'2)e m; | Y2 V2 ¢ 045
N===5] oz\m) »
X w :8e Qe Me quL Gy .
el parallel
X nzf du e v’zW(z,) B
n=x1 0 FIG. 2. Dimensionless growth rate; as a function of the di-
x / mensionless quantitief andq; for wpe/|Qe|=10, vp;/v;=1.0,
Ja \/Eveu)Jl( \/Eveu), Bi=5, andB,=0, fully taking into account the electron inhomoge-
o neity.
nkzxj_o’
, Ref.[13], namely, the occurrence of a pronounced instability
2 1 ( 2 )Ma)pe( mi)l’2 1 atg;=0, coupled to an extended unstable region for a large
7]‘ |l == — _ — _— . . s
\zy/ Be Q(Za Me \/Equi interval of values of finiteq andq, . However, it is also

seen the occurrence of an instability for — 0, which was
o ’ — not obtained from the formulation appearing in REE3].
X ”zf duue 23z, J(V2veu). This is a purely growing instability, with vanishing real fre-
quency, as it is seen in Fig. 3, which shows the real part of
The derivation of Eqs(13) and (14) can be found in the frequency corresponding to the growth rates appearing in
Appendix B. Using Eq(13) and definingNg=ceg/w, the F19: 2: _ _ _
dispersion relation becomes .In order to investigate the nature of the instabilities ob-
tained, we show in Fig. 4 the growth rates evaluated for a
de((l—N2)5ij+Xij—NiN|X|j—i NiNg7,]=0. (15) situation in which we keep the ion drift velocity,p; /v;
=1.0, but neglect the electron inhomogeneity by assuming
We remark here that the presence of the effective suscep=0g=0. In the present context this situation is rather ar-
tibility in Eqg. (15) assures that the process of energy exdificial, but would correspond to a case in which the ion drift
change between wave and particles is correctly describeds caused by other mechanisms, such as&ReB drift. Fig-
since its correct symmetry guarantees that the anti-Hermitiatre 4 shows an unstable peak that is maximum for figjte
part of the dielectric tensor, responsible for wave absorpand finiteq, , and also shows the instability far — 0, with
tion or amplification, is only due to resonant termsthe same magnitude as that appearing in Fig. 2. Since the
[14-16,21-238 electron inhomogeneity has been neglected, these instabili-
ties are caused by the existence of the ion drift, and there-

IV. NUMERICAL ANALYSIS OF THE DISPERSION
RELATION O/ O

We now present sample examples of the full numerical
solution of the dispersion relation given by E45), where s
the x;; components are given by Eq$3) and (4), N, 6
=ck, /o, Nj=ckj/w, andN=ck/w. The above equation is Z
solved for the normalized complex frequensyas a function o RN
of gy andq, , with other quantitiesBe, B;, wpe/|Qe|, and :,":“3“‘ >
vpilvi, as input parameters. < SRR

In what follows, we considew,./|Q|=10, vp;/vi=1,

Bi=5, and consider the idealized case&=0. We have
deliberately made the choice of these parameters that ar
identical to those considered in Ré¢fL3], so that a direct
comparison can be made.

The growth rate of the unstable mode with frequency in FIG. 3. Dimensionless real frequenay as a function of the
the lower-hybrid range is shown in Fig. 2, in surface meshgimensionless quantitiesy and g, for wpe/|Qe|=10, vp;/v;
plot and contour plot versug; and g, . Figure 2 shows =1.0, 8;=5, and 8.=0, fully taking into account the electron
many features that are similar to those appearing in Fig. 3 ohhomogeneity.

X
RS
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FIG. 4. Dimensionless growth rate; as a function of the di-
mensionless quantitiep andq; for wpe/[Qe|=10, vp;/v;=1.0,
Bi=5, andB.=0, completely neglecting the electron inhomogene-
ity.

fore are identified as the MTSI and its limit for, —0, the
IWI [25,26. In Figs. 5 and 6 we show two cases in which
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FIG. 6. Dimensionless growth rate; as a function of the di-
mensionless quantitief andq; for wpe/|Qe|=10, vp;/v;=1.0,
Bi=5, and B.,=0, usingqg, and gg values that are 50% of the
values used in Fig. 2.

2

® 2
— E+k(k-E)—KE+
C

w
—¥-E=0, (16

C

the effect of electron inhomogeneity is gradually taken into

account, while keeping the same value for the ion drift. Fig-where the constitutive relation E@8) has been used. The
ure 5 displays the growth rates obtained for the case whergolubility condition for Eq.(16) is the usual dispersion rela-

the values ofy, andgg are only 20% of those utilized in the
case of Fig. 2, and Fig. 6 depicts the case with valueg,of

andgg that are 50% of those used in Fig. 2. The sequence of

figures, Figs. 4, 5, 6, and 2, display the gradual appearance
the LHDI, which occurs neag =0, due to electron inhomo-

geneity. Regarding the real frequency, for the cases whose

growth rates appear in Figs. 4, 5, 6 we obtained curves al
most undistinguishable from that appearing in Fig. 3.

It is interesting to remark that, if the terms containing the
space derivatives of thg;; are neglected in the dispersion
relation, one obtains the MTSI and the IWI, but the LHDI is
not found. It is also interesting to remark that, if a WKB
approximation is used in Ed5) before the introduction of
the Gauss law, instead of E(¢) we obtain the following
familiar set of algebraic equations:

;7 Oy

0.14
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0.08
0.06
0.04
0.02
0

0.3
0.25

Qparallel

FIG. 5. Dimensionless growth rate; as a function of the di-
mensionless quantitiep andq; for wpe/[Qe=10, vp;/v;=1.0,
Bi=5, and B8.,=0, usingq, and gg values that are 20% of the
values used in Fig. 2.

tion

2 w?
kikj_k 5” + ga‘ij

17)

of

N -

Solving the dispersion relation given by E@d.7), again
kive obtain the MTSI and the IWI, with solutions practically
equal to those appearing in Fig. 4, but the LHDI is absent. It
is seen that the terms with the space derivative ofxtjen
Eqg. (12) are essential for the appearance of the LHDI, and
must be maintained in the dispersion relation, since they are
of the same order of other inhomogeneity effects that were
taken into account in the derivation of the components of the
dielectric tensor.

In addition to the argument about the terms with space
derivative of they;; contributing with inhomogeneity effects
of same order as those taken into account in the evaluation of
the x;; components themselves, we point out the following.
It is well known that, although LHDI is an inherently elec-
tromagnetic instability, it has, nevertheless, a strong electro-
static componen(see, e.g., discussion in R¢f.3] and ref-
erences therejn It is also well known that electron
inhomogeneities play an important role in the generation of
LHDI. Thus, had one considered LHDI electrostatic, as a
first approximation, and used Poisson’s equation to derive
the electrostatic dispersion relation, one would easily obtain
LHDI. Moreover, the dispersion relation obtained would be
different from the electrostatic limit of Eq17). This dis-
crepancy was noted by the authors of R&8], who follow-
ing the steps of previous authors tried to solve it by using
Poisson’s equation instead of tlyecomponent of Eq(17),
which is based upon Ampe's law. They obtained the LHDI
instability, and they have noticed that failure to undertake
this remedial procedure would result in a dispersion relation
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APPENDIX A: SOME DETAILS OF THE DERIVATION OF
V. CONCLUSIONS THE DIELECTRIC TENSOR

As a closing remark, we reiterate that the electron contri- According to the previous development of the formalism
bution to the components of the dielectric tensor, given inusing the BGI procedure, the electron contribution can be
Egs. (3) and (4), has been obtained following a consistentwritten as follows[14]:
method that is based on correct description of wave-particle e o o
energy exchangf24]. As such, and unlike previous formu- X =XptXe-
lations employed in the study of LHDI, the dielectric tensor

featyres correct symmetry properties, which guarantee th 34]_1 For the present case, in which we consider propagation
the imaginary part of the wave frequency obtained from the | the yz plane and only terms corresponding to harmonics
dispersion relation is not due to spurious nonresonant terms,— g andn=+1 are kept, we obtain the following:

The conventional approaches to describe MTSI have re-
lied on homogeneous theory with the drifts simply imposed 2
(e.g.,[8]). In the usual approach to homogeneous theory, the (XP)xx=— k_enxeng 6o(v2)Z(z),
relationship between current density and electric field is uti- |
lized in the derivation of the dielectric tensor. For LHDI in
high-8 plasmas, on the other hand, a hybrid formulation that
utilize electric current and charge density perturbations has

(A1)

The componentgp;; may be obtained from Eq&27) of Ref.

1
(XP)yy: \/—TkH Ve€nXe

been employede.g.,[3,13]). In the present formulation we B 1
have also utilized electric current and charge density fluctua- % 2 n_Hn(,,g)_ - n
tions, which appeared when we took into account Gauss's n==1 | p2 Ye 12

law of electricity in the derivation of the dispersion relation.

Instead of utilizing charge density as ad hocprocedure, v n_ZH WD) —H () | |z(z)

we have shown that the use of Gauss’s law introduces a term V2 mre nhoe n

with a derivative of the space dependent electric conductiv-

ity, a term of the same order of other terms responsible for 1k, Xe

inhomogeneous effects, which have been taken into account (Xp)zz=— > Pen Y—eHO( vg)z’(zo), (A2)
[

in the derivation of the dielectric tensor. This term coming

from the use of Gauss’s law has been shown to be essential

to the proper dispersion relation for inhomogeneous media, _ . [ Xe ;0

and cannot be neglected, otherwise the LHDI is not found as (XP)xy= ~(Xp)yx=~ ﬁff‘y—”eH o(ve)Z(Zo),

; ; ; P ; I €

a solution of the dispersion relation in the lower-hybrid

range. This would be in contrast with simulation studies, i

which have reported instabilities that are usually regarded as  (xp)y,= —(Xp)2x= — ﬁenxeng(’,(vg)Z’(zo),

being the LHDI[27-29, and also in contrast with nonlocal I

analysis of inhomogeneous equilibria, where unstable solu- 1 X

. ; " ] e

'Elé)gf?:%?ntlfled as the LHDI have been reported many times (XP)yz=(XP)zy=— 4_kH6”Y_eH o vi)Z(l)(Zo),
The conclusion is that the present formalism, derived fol- 5 2 2,2

lowing a consistent formulation that introduces proper symWhere ve=Kkive/Qc, ZO:‘”/(\/Esllve)' and  z,=(o

metry features, has been shown to accurately describe NQe)/(v2kjue). Moreover,Xe= w5 w® and Y=/ .

instabilities in the lower-hybrid range for a weakly inhomo- According to this definition, the sign that appears zn

geneous plasma treated in the local approximation, including

MTSI, LHDI, and the IWI. It therefore constitutes a unified

formulation for the local treatment of the instabilities in the *Notice that there is a typographical error in the second line of Eq.

lower-hybrid range, something that was not yet available in27b) in Ref.[14]. Instead of “ - - +in]H ,(»2),” the correct ex-

the literature. pression should be “ - +in]H (v2).”
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=7,_.1 corresponds to the sign af and corresponds also to Gr ol (Z,Bs M0 s Vo s Xna)
the sign appearing in front gi},|. Therefore, the sign is -
opposite to that appearing in front 6¥,, which carries the - f“dt(lt) e*'e
sign of the charge. Accordingly, the quantity is a negative 0 (1+inyt)P

quantity, as well a¥,.

In the derivation of Eqs(A2), we have taken into account o g 2R+ [Hno(H)]™
that, in the vicinity of the lower-hybrid frequency, the abso- [Sha(D)] !
lute value of the arguments of the Fried-Conte functions may
be written as follows: (A4)

Sha(t) )
1+ing,t)’

e where

L‘ 2
Vil | V2ke

wherer ¢ is the electron Larmor radius ang represents the

|z.|=

Hna(t) = 12— 12S,1,SIN Y xnat — X2ut?,

parallel wavelength. We have then neglected the contribution Sna(t)= V¥ — 215, COS 2 xp, 12+ xnat™.

of some terms witm= £ 1, as compared to the contribution

of those withn=0, considering thak j>r . In the above, z=u, (1-nY,)=up,6,, and £,
The componentyg;; may be obtained from Ref23],  =NgN, siny/Y,=1—0,. This nonrelativistic form may be

where a formulation that keeps relativistic effects has beewbtained directly from the relativistic inhomogeneous plasma
employed and a more general distribution function has beedispersion function, appearing in Ref23], by making
considered. However, for the present application a nonrelégt—0 andio,— —iZ,.

tivistic formulation is sufficient. From Eqg6) of Ref.[23], Equation(A4) may be further simplified. For instance, in
by considering only harmonice=0 andn==*1, with 4/  the particular case ofi=0, Hpe(t) =2 and Sne(t)=\/7g

= /2 (which corresponds in Ref23] to propagationinthe —p (1), and the inhomogeneous plasma dispersion func-

yz plang, Maxwellian distribution {=0), and by use of the  tjon for the electron contribution may be written as follows:
“nonrelativistic inhomogeneous plasma dispersion function”

Gy p,m instead of the “relativistic inhomogeneous plasma

dispersion function’g, 4 , m|, we arrive at the following: Grpmi(Z.8.{e ve)
(= (it)TdHadoute A
(XB)xx=—2 MeXevg(Qo,&o,o— Vggo,&o,])v - JO dtw
2 VZ
Y - 3
(XB)yy= — HeXe [Go1.01 2VeX1e(G1201~ 912121, X @ L FILeD) 2D .
o 1+iget
- X 28 NZ A3 s 2(m—1) xd (it)rei/"LyﬁOate*,Btz V2
(XB)zz= — HeXe(Y0,1,00" #eN[G21,00+ (A3) -2 jo t e ” )
| (A5)
(XB)Xy= — (XB)yxz i Mexen;l n
+ Wherega: NgN, /Ya-
X[Go1.01 ¥a(Go201 Go21.2 For the components depending on harmonies* 1, and
2 weakly inhomogeneous plasmas, such fyat|<1, we may
t2vex1e(9131,1 Ye91,31215 use the following equation, valid far+0:

(xB)xz=—(xB)2x=IN H:U’Z’/zXeVe( gl,Z,0,0_ Vggl,Z,O,])a 2m
gf.p,m.|2gr,p,m,||xn=0_ V_\/ZMeNHSanngrl,p,m,l|Xn:0,
e

(AB)
(XxB)yz=(XB)2y= N\\Mglzxenzl [—NnveGi10a

) where x,=(n/2%?) eg /K= xne/(\21eN)). For the case of
tNx1e(92,101T 92211 V6922121, n==*1, sincey, is proportional ton, we haveS,x,= x1.
Equation(A6) shows that we only need the plasma disper-
where ue=mgc?/T,, Nj=ckj/w, and x,e=n(c/ve)Ng/2,  sion function evaluated at; =0, which means that it is pos-
whereNg=ceg/w. sible to use Eq(A5) also forn=*1, by replacingu ,5,, for
In Eg. (A3), G is the nonrelativistic inhomogeneous w,dq,, in the argument of the exponential function.
plasma dispersion function for the isotropic case, which may For the particular case @f= 1, with the use of Eq(69) of
be written as in Eq(IV-17) of Ref.[21], Ref.[33], Eg. (A5) may be written as
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gr1m|:_i2V§(m_l)J du Ue_uzJF(\/EVaU) (xB) :—\/mee
Am, 0 Blyy N 12
Ve
® o (1 S5 — 7 Ut pt2 w o
X jo dt(lt)ré(/’“a O gau )te Bt . (A7) X 2 (f du uefuzz(zn)\]i(\/zveu)
n=x+1 0
We now introduce the definitions of the Fried-Conte func- oc X
tion [34], —x12\2Z'(z,) Jo du e U
e 2
Z(z)—|J’0 dyexplizy—y</4). (A8) %, \/Eveu)Jz(\/Eveu)),
Using Eq.(A8), one may express the inhomogeneous plasma
dispersion function foks= /2 in terms of the derivative of Xe [
orderr of the Fried-Conte function, (XB)zz= — N_ffo du u(uedoe
2(m—1) " o =
Gt =— 2”a—J du ue ¥’z — U2 e U I3(V2reu)Z' (2g),  (AL2)
T (V2paNpth o
,U«a5oa_§auz) 2 (XB)Xy:_(XB)yx
x| === (\2v,u), (A9)
V2N 2\eXe

=i n
whereZ((z) represents the derivatives &fz) of orderr. Nive n=%1

For the case=2, it is possible to demonstrate a similar

expression, X fdu WPe wZ(z,)
0
2(m-1-1) . ’
Grami=— (\/;LWJ duue v’z X J1(V2veu) I} (V2reu)
MalN| 0 }
ol +ﬁxlz'<zn>f du wPe " I3(\2rew) |,
| Had0e S 52021297 2w,0) °
oY | a
V2uaN|
+ 2 .2912 \/z\/lu—x - P
20502012 (V2w u)], (A10) (o= — oo e ("
as well as fop=3 [ 0
L2(m=1-2) . ) X Jo(V21eU) 31 (V2veU)Z' (20),
gr3mI:_a—f duuevz®
3(V2u NPTt Jo B
(V2uaNy) VeXevs?

Maéoa_gauz (XB)yz:(XB)zy: N”

){(2v§u2—|2)[(2y§u2—|2)

\/Zlu’aN o J—
| X > (n uef duue ¥z’ (z,)34(V2veu)
X JH(V2v,u) + 202023 2( 2 ,u) ] 123%(\2 v u) n==1 0
+202023]4(\2v ) +2xan[z4Z' (zy)
+ 24203080, (V2v,u) 3/ (V2v,u)}. (A11) +2(2,)] f duue Y [3(V2reu)
0
The approximate forms Eq&A9), (A10), and(All) give
the nonrelativistic dispersion function faqt,=0, as we need + 200 3(2v.U) 3. (V2 v )
the terms coming from= =1, according to Eq(A6). Using Vel \/—Ve Hal \/—Ve 1)

these explicit expressions for the inhomogeneous plasma dis-

persion_fun_ction(AB), after some algebraic manipulations \here Z:(Megne_gelJZ)/(\/z_MeNH):(w_nQe_ | egvu?/
and taking into account that thefunction only depends on Qe)/(\/EkHve)- As mentioned in Sec. Il, the ions can be
n through its argument, we arrive at considered unmagnetized and carry a current inytheec-

22X (= tion. Their contribution to the dielectric tensor may be given
(Xe) = N#e eJ du u3e’“2‘J§( V2v)Z(zo), Fly3]Eq. (4), which is the same as that which appears in Ref.
II 0 .
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Up to this point, we have employed the same notation The second contribution to E4B1), which is of order
used in previous works, in order to relate more directly thee,, will not be important in what follows. It can be obtained

expressions useful for the present application to those previaccording to the derivation found in RéfL5].

OUS|y Obtainec[l4,15,22,2$ In what fO”OWS, hOWeVer, it Eva|uating the derivative oi/ﬂ , using Eq(B_’L)’ we get
may be more convenient to modify the notation and write the
dielectric tensor in terms of quantities more directly con-
nected to the lower-hybrid range. These are the normalized
guantities that we have already encountered in Egs.

and (4): q,=ck /wpe, qj=ckj/wpe, Un=(C/wpe)en,
dg=(Clwpe) €, andw= w/ vy, .

It may be useful to remark here that the definitions of Applying the BGI transformation, following what has

vi, andvp; used in the present work are different from yoan made for the componentg themselves in Ref22],
those used in Refl13], while the definition ofv, is the o gutcome is the following:

same appearing in that paper. The nondimensional quantity
gn, can be related to the ion drift velocity13], q, )
=2(vpi/vi)IVBi(m;/my), with the relationship betweeq, aoxii =i EB47Te 2 nQ fdapf dr(imp, L(fe)
andqg, gg=(Be+ Bi)qn/2, whereB,=8mn,T,/B3. Using H Mew “n ¢ e
this more convenient notation, the componentg®and ¥’
may be written as they appear in E(R). and(4), in the main
body of the paper.

4

0 _
S =] € —
xXij B

eZ
=3 0, [ &% [ drtip, £t

X (E:e)i(Hne)jeinene(T)eiDneT_

X (H;e)i(H:Ire)jeinane(T)eiDneT'

Each term in this summation is equivalent to the terms
appearing in the,\/gij, multiplied by —nQ.eg(i7). When
taking into account the distribution function, in the nonrela-
tivistic approximation, the velocity integrals will be the same
as those appearing in the evaluation of fhe, with the 7
corresponding to the,,, ,, instead of the

APPENDIX B: EVALUATION OF THE SPACE DERIVATIVE
OF THE DIELECTRIC TENSOR

In order to evaluate the derivative of they;; compo- .
nents, let us start by considering that, when the magnetilﬂfregr"’lI onding _ _
field inhomogeneity is taken into account in the evaluation ofr,p,m, - Proceeding similarly to what we did to obtain Egs.
characteristic trajectories, and the distribution function is ex{A3), we obtain
panded up to first order in the inhomogeneity, the suscepti-
bility tensor that takes into account the inhomogeneity ef-
fects may be written as a summation of a term incorporating
effects of field gradients and depending on the distribution
function, and another term depending on the derivative of the
distribution function,

dxx11=0,

2
IxX22= EBMeXeYen; . N[G1,1,01 2Vex1e( 92201

- g2,2,l,2)]1

X=X fe(€,=0),€a]+ X3 ., eg=0]. (B

. . L dxxe33=0, (B3)
The first term in Eq(B1), which incorporates effects of
the field inhomogeneity and neglects the density inhomoge-

12 :2
neity, is obtained from the derivation made in Ref2], IxXB[3= T epl ueXeYe

Am e? X n;ﬂ nz[gl,l,o,l_ Vg(gl,Z,O,l_ G121,

5?%=—I——; fd%J drp, L(feo)

w Mg 2

. +2 vex1e(92,31,1 V6923121,
N ) .~ 47 e

XE:eHneefnane(T)e'DneT— €363 — —f dap%l_(feo),

@ Me Ixxe(33 =0,

(B2)

. Ay xs(23 = — egNju?X, Y
where the space dependence appears through the quantity xXB[35 ~ T €BN|He Mele

X > N[ = veG2.1.0.1+ X1e

k, u?c?

Dne(€g) = yo—ckju—nQg(1+ €gX) — €850
e

siny.

n==1

2
X(G31,01F 93211 VY3212 |-

Explicit expressions for other quantities involved can be For the evaluation of these expressions, we use Egs.

found in Ref.[22].

(Ad4)—(A11), as we did in Appendix A, and obtain

036407-10



UNIFIED FORMULATION FOR INHOMOGENEITY¥ . ..

IxXij= — €BMij »

where

PHYSICAL REVIEW E 65 036407

(B4) V2ueXeY -
12=rj 28N nzf du e v
77[21) Nfue n=+1 0
/Jveane_geLI2
VAL —)Jl(ﬁueu)
V2ueN|
X J}(V2veu),
7/33=0,
XY ®
HeZele n2| duue ¥

2= _— ~— ~
77[32‘) \/ENﬁVe n=x1 0

% 7(2)

Mebne— el )2
2vU).
ZhN, (V2veu)
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