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Unified formulation for inhomogeneity-driven instabilities in the lower-hybrid range
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A local dispersion relation that describes inhomogeneity-driven instabilities in the lower-hybrid range is
derived following a procedure that correctly describes energy exchange between waves and particles in inho-
mogeneous media, correcting some inherent ambiguities associated with the standard formalism found in the
literature. Numerical solutions of this improved dispersion relation show that it constitutes a unified formula-
tion for the instabilities in the lower-hybrid range, describing the so-called modified two-stream instability,
excited by the ion cross-field drift, including the ion Weibel instability, and also describing the lower-hybrid
drift instability, which is due to inhomogeneity effects on the electron population.
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I. INTRODUCTION

The plasma of earth’s magnetosphere offers plenty of p
sibilities for the excitation of waves that may feed on the fr
energy available due to inhomogeneities. In the magneto
drift instabilities may play an important role as the ener
dissipation mechanism. The electron density, magnetic fi
and temperature gradients are known to drive the so-ca
lower-hybrid drift instability~LHDI ! @1–7#, while the cross-
field drift of the unmagnetized ions drives the modified tw
stream instability~MTSI! @8–12#. In general, both instabili-
ties may be simultaneously present in the magnetotail.

The standard formalism found in the literature usua
employs a local approximation to discuss these instabilit
treating the inhomogeneity as adiabatic. However, such
approximation contains some inherent ambiguities. A re
tively detailed description of these ambiguities can be fou
in a paper by Yoon, Lui, and Chang 1994, where an uns
cessful attempt toward a unified description of instabilities
the lower-hybrid range has been made@13#. In Ref. @13# the
strongly electrostatic nature of the LHDI has been taken i
account by using Poisson’s equation and the relationship
tween charge density and electric field to obtain some of
components of the dielectric tensor, taking into account
homogeneity effects, while Ampere’s law and the relatio
ship between current density and the electric field was u
for other components. This hybrid formulation has been a
to describe the LHDI, but could not be used to describe
MTSI in the limit for parallel propagation. On the othe
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hand, the usual dispersion relation derived with use of
relationship between current density and electric field co
describe the MTSI/IWI~ion Weibel instability!, but failed to
obtain the LHDI@13#.

Taking into account this situation, and aiming to form
late a unified and consistent local theory for the
inhomogeneity-driven phenomena, we have recently deri
a rather general expression for the electron linear dielec
response function, which can be readily utilized in the s
bility analysis of weakly inhomogeneous media@14#. Such a
result is a culmination of a series of earlier efforts in whi
inhomogeneous plasma parameters@15–20# and inhomoge-
neous magnetic field@21–23# have been discussed. The de
vation of the general expression is based on an itera
method termed ‘‘the BGI procedure,’’ after Beskin, Gure
ich, and Istomin who pioneered such a method. This pro
dure was developed in order to ensure that the absorp
coefficient obtained from the solution of the dispersion re
tion is related to an effective energy exchange betw
waves and particles@24#, which the adiabatic local theory
does not.

In the present paper we derive a proper dispersion r
tion, taking into account the relevant inhomogeneity effec
and use with this dispersion relation the components of
dielectric tensor obtained with the general formalism d
scribed in Ref.@14#, particularized to the case of drift insta
bilities in the lower-hybrid frequency range, for propagati
in the plane perpendicular to the direction of the inhomo
neity gradients. It is found that the resulting dispersion re
tion offers an unified description of both the LHDI and th
MTSI, and also describes the so-called IWI, a purely gro
ing instability that appears for purely parallel propagatio
Such unified description was not yet available in the lite
ture, to the best of our knowledge.

The structure of the paper is the following. In Sec. II w
©2002 The American Physical Society07-1
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describe the model of the inhomogeneous region and w
down the final expressions for the components of the die
tric tensor to be used in the dispersion relation. In Sec. III
establish the appropriate dispersion relation that incorpor
the relevant inhomogeneity effects. In Sec. IV we conduc
series of numerical analyses of the dispersion relation, c
sidering parameters relevant to the case of earth’s magn
tail. Finally, some comments on the results obtained app
in Sec. V.

II. MODEL OF THE INHOMOGENEOUS REGION AND
THE COMPONENTS OF THE DIELECTRIC

TENSOR

Let us consider a slab of magnetized plasma, with m
netic field pointing along thez direction, featuring inhomo-
geneities in magnetic field and density, along thex direction,
with the following profiles:

B~x!5B0~11eBx!ez ,

n~x!5n0~12enx!, ~1!

where n(x) represents the equilibrium electron density
positionx, assumed to be equal to the ion density, and wh
eB51/LB anden51/Ln are inverse scale lengths that chara
terize the inhomogeneities in magnetic field and density,
spectively. These profiles may represent, for instance,
magnetic field and density at the magnetotail of the ea
Figure 1 is a schematic view of the slab geometry, featur
the gradients of magnetic field and density that are perp
dicular to the ambient magnetic field, and the ion and el
tron diamagnetic drift velocities, which occur due to the de
sity inhomogeneity.

In an inhomogeneous slab as we are considering the e
tron distribution function depends onv and Xe5x
2vy /uVeu, the space dependent constant of motion that r
resents thex component of the guiding center position of th
electron cyclotron orbits. If the scale length of the dens
inhomogeneity is much larger than the electron Larmor

FIG. 1. Schematic representation of the inhomogeneous pro
of magnetic field and density in the slab geometry, indicating
orientation of the electron and ion drift velocities.
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dius (Ln@r Le , wherer Le5ve /uVeu), the electrons distribu-
tion can be given by the following approximated form

Fe~v,Xe!. f e~x,v!2
vy

uVeu
] f e

]x
~x,v !

5S 11A2
vDevy

ve
2 D f e~x,v !,

f e~x,v !5
n~x!

~2p!3/2ve
3

expS 2
v2

2ve
2D ,

whereve5ATe /me is the electron thermal speed,Te being
the electron temperature, andvDe5enve

2/A2uVeu is the elec-
tron diamagnetic drift speed.

The ions can be considered as unmagnetized for wa
characterized by the inequalities,v@V i and r Li@l, where
v is the wave angular frequency,V i is the ion cyclotron
angular frequency,r Li is the ion Larmor radius, andl is the
wavelength. Therefore, it is not necessary for us to use
the ions the expression developed in Ref.@14#, but instead
we may simply treat the ion distribution as a drifting Ma
wellian,

f i5
n~x!

~2p!3/2v i
3

expS 2
vx

21~vy1vDi !
21vz

2

2v i
2 D ,

where v i5ATi /mi is the ion thermal speed andvDi

5env i
2/(A2V i) is the ion ~diamagnetic! cross-field drift

speed. This distribution function for the unmagnetized io
allows for simplicity in the description of the ion contribu
tion for the dispersion relation, while featuring the cross-fie
drift movement that is the driving mechanism for the MT
instability.

We now consider the case of propagation in theyz plane,
which is the plane perpendicular to the direction of the inh
mogeneity gradients, and frequencies in the vicinity of t
lower-hybrid frequency, which means that the only importa
contributions are those that pertain to the harmonicsn50
andn561 in the electron response functions.

The dielectric tensor is given by

«J5 II1xJe1xJ i , ~2!

wherexJe corresponds to the electron dielectric susceptibi
tensor andxJ i corresponds to the same for the ions. The co
ponents ofxJe andxJ i , given below~details of the derivation
appears in Appendix A!, include the corrections, which fol
low from the above-mentioned BGI procedure, to the st
dard expressions found in the literature~see, e.g.,@13#!,

xxx
e 5

1

v̄2

vpe
2

Ve
2

mi

me
S 2A2

qn

qi
ne

3H 08~ne
2!Z~z0!

14z0E
0

`

du u3e2u2
J1

2~A2neu!Z~ z̄0! D ,
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qi
(

n561
Z8~zn!E

0

`

du u2e2u2

3J1~A2neu!J2~A2neu! D G ,

xzz
e 5

1

v̄2

vpe
2
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2
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A2

2
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qi
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0
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xxy
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(
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for the electrons, and
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for the ions, wherev̄5v/v lh , v lh5(V i uVeu)1/2 being the
lower-hybrid angular frequency,V i5eB0 /mic and Ve5
2eB0 /mec being the ion and electron cyclotron frequenc
respectively;vpe

2 54pn0e2/me andvpi
2 54pn0e2/mi are the

electron and ion plasma frequencies, respectively:

qn5
c

vpe
en , qB5

c

vpe
eB , q'5

ck'

vpe
, qi5

cki

vpe
,

k' and ki being the parallel and perpendicular compone
of the wave vector with respect to the ambient magne
field, respectively;Hn(x)5I n(x)exp(2x), In(x) being the
modified Bessel function of the first kind of ordern, the
prime indicating the derivative with respect to the argume

ne
25

k'
2 ve

2

Ve
2

, z05
v

A2kive

,

z(n561)[z65
v7Ve

A2kive

5
v6uVeu

A2kive

,

z̄n5
v2nVe2k'eBve

2u2/Ve

A2kive

, zi5
v1A2k'vDi

A2 k v i

.

Z(z) and Z8(z) are the familiar plasma dispersion~Fried-
Conte! function and its derivative, respectively.

One of the important consequences of the ‘‘BGI’’ corre
tion is that the above dielectric tensor elements preserve
correct symmetry with respect to the off-diagonal elemen
namely,

exy52eyx , exz52ezx , eyz5ezy .

Reference@13# makes note of the breakdown of this symm
try ~i.e., the Onsager symmetry! in the traditional local ap-
proximation of weakly inhomogeneous plasma linear sta
ity problem, and attempts to correct this problem
employing componentsey j ( j 5x,y,z) calculated with the
use of an approximated form of the perturbed Poisso
7-3
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equation. The resulting expressions for the tensor elem
did restore the required symmetry, but it was a fortuito
happenstance rather than a result based upon first princi
The authors of Ref.@13# speculated whether the breakdow
of Onsager symmetry was the result of approximated o
calculation associated with the electrons. However, in rea
the problem has nothing to do with the orbits, but rather i
an inherent consequence of the local approximation, wh
in general does not satisfy the proper energy exchange
tion between the particles and waves. The BGI proced
naturally corrects this deficiency and the Onsager symm
relation results as a corollary, as Eq.~3! clearly demonstrates
In short, we believe that Eq.~3! represents a more systema
and accurate formula appropriate for local linear stabi
analysis of weakly inhomogeneous plasmas in the low
hybrid frequency range.

At this point, a brief overview of the BGI procedure ma
be appropriate. As explained elsewhere@18,22#, the proce-
dure first involves the computation of the customary expr
sion of the local dielectric tensor on the basis of the relati
ship between current density and electric field, b
incorporating inhomogeneity effects. This customary expr
sion does not satisfy Onsager symmetry. A set of reme
prescriptions generally outlined in Ref.@24# is then applied
to this preliminary form. It is important to point out that th
procedure is notad hoc, but is based upon firm theoretica
ground. The result is Eq.~3!. The specific details have bee
worked out elsewhere@15,22,24#. We emphazise that in Eq
~3!, only the resonant particles contribute to the an
Hermitian part of the susceptibility tensor, thereby describ
correctly the energy exchange between waves and parti
If Landau damping is absent, the components of the sus
tibility tensor are Hermitian.

III. THE DISPERSION RELATION

In order to obtain the dispersion relation appropriated
deal with instabilities in a weakly inhomogeneous plasma
which we will utilize the components of the susceptibili
tensor that incorporate inhomogeneity effects, as given
Eq. ~3!, we start from Maxwell’s equations, take the curl
Ampère’s law, use Faraday’s law, and obtain

2
1

c2

]2E

]t2
2“~“•E!1¹2E5

4p

c2

]J

]t
. ~5!

Using Gauss’s law of electricity, this equation becom
the following:

2
1

c2

]2E

]t2
1¹2E54p“r1

4p

c2

]J

]t
. ~6!

Considering now the WKB approximation forE, J, and
r, Eq. ~6! can be transformed into an algebraic equation

v2

c2
E2k2E5 i 4pkr2 i

4pv

c2
J, ~7!
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with the current density being related to the wave elec
field by a constitutive relation,

J52 i
v

4p
xJ•E, ~8!

where for weakly inhomogeneous media the tensor (xJ) is the
effective susceptibility tensor. For the geometry utilized
the present paper and for frequencies in the lower-hyb
frequency range, the components of the effective suscept
ity tensor are given by Eq.~3!. Regarding the charge densit
r, it is also related to the wave electric field by a constituti
relation. However, instead of following steps similar to tho
utilized to obtain the constitutive relation betweenJ andE,
for r we adopt a shortcut and use the continuity equation

r~r,v!52
i

v
“•J~r ,v!, ~9!

obtaining, after use of Eq.~8!,

r~r ,v!52
1

4p
“•@xJ~k,r,v!•E#'2

1

4p
@ ik•xJ1“•xJ#•E.

~10!

Notice that this expression for the charge density conta
space derivatives of (xJ), which are of the same order a
gradient terms taken into account in the derivation of
susceptibility for inhomogeneous plasmas, and which
therefore to be maintained in the wave equation.

Inserting expressions~8! and ~10! into Eq. ~7!, the out-
come is a set of algebraic equations for the wave elec
field,

v2

c2
E2k2E5k@k•xJ2 i ~“•xJ !#•E2

v2

c2
xJ•E, ~11!

whose solubility condition is the following dispersion rel
tion:

detF ~12N2!d i j 1x i j 2NiNlx l j 1 iNi

c

v

]x l j

]xl
G50, ~12!

where Einstein’s sum rule for repeated indexes has been
and whereN5ck/v.

For the situation discussed in the present paper the o
nonvanishing space derivative of the susceptibility is thex
derivative, which can be written as follows:

]x i j

]x
52eBh i j , ~13!

where

hxx50,
7-4
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hyy52
1

v̄
S 2

be
D 2vpe

2

Ve
2 S mi

me
D 1/2 1

qi
2q'

2

3 (
n561

nE
0

`

du ue2u2
Z(1)~ z̄n!J1

2~A2neu!,

hzz50, ~14!

h Sxy
yxD56 i

1

v̄
S 2

be
D 3/2vpe

2

Ve
2 S mi

me
D 1/2 A2

qi
2q'

3 (
n561

n2E
0

`

du u2e2u2
Z(1)~ z̄n!

3J1~A2neu!J18~A2neu!,

h Sxz
zxD50,

h S yz
zyD5

1

v̄
S 2

be
D 3/2vpe

2

Ve
2 S mi

me
D 1/2 1

A2qi
2q'

3 (
n561

n2E
0

`

du ue2u2
Z(2)~ z̄n!J1

2~A2neu!.

The derivation of Eqs.~13! and ~14! can be found in
Appendix B. Using Eq.~13! and definingNB5ceB /v, the
dispersion relation becomes

det@~12N2!d i j 1x i j 2NiNlx l j 2 i NiNBhx j#50. ~15!

We remark here that the presence of the effective sus
tibility in Eq. ~15! assures that the process of energy
change between wave and particles is correctly descri
since its correct symmetry guarantees that the anti-Herm
part of the dielectric tensor, responsible for wave abso
tion or amplification, is only due to resonant term
@14–16,21–23#.

IV. NUMERICAL ANALYSIS OF THE DISPERSION
RELATION

We now present sample examples of the full numeri
solution of the dispersion relation given by Eq.~15!, where
the x i j components are given by Eqs.~3! and ~4!, N'

5ck' /v, Ni5cki /v, andN5ck/v. The above equation is
solved for the normalized complex frequencyv̄ as a function
of qi andq' , with other quantities,be , b i , vpe /uVeu, and
vDi /v i , as input parameters.

In what follows, we considervpe /uVeu510, vDi /v i51,
b i55, and consider the idealized case ofbe50. We have
deliberately made the choice of these parameters that
identical to those considered in Ref.@13#, so that a direct
comparison can be made.

The growth rate of the unstable mode with frequency
the lower-hybrid range is shown in Fig. 2, in surface me
plot and contour plot versusqi and q' . Figure 2 shows
many features that are similar to those appearing in Fig.
03640
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Ref. @13#, namely, the occurrence of a pronounced instabi
at qi50, coupled to an extended unstable region for a la
interval of values of finiteqi and q' . However, it is also
seen the occurrence of an instability forq'→0, which was
not obtained from the formulation appearing in Ref.@13#.
This is a purely growing instability, with vanishing real fre
quency, as it is seen in Fig. 3, which shows the real par
the frequency corresponding to the growth rates appearin
Fig. 2.

In order to investigate the nature of the instabilities o
tained, we show in Fig. 4 the growth rates evaluated fo
situation in which we keep the ion drift velocity,vDi /v i
51.0, but neglect the electron inhomogeneity by assum
qe5qB50. In the present context this situation is rather
tificial, but would correspond to a case in which the ion dr
is caused by other mechanisms, such as theE3B drift. Fig-
ure 4 shows an unstable peak that is maximum for finiteqi
and finiteq' , and also shows the instability forq'→0, with
the same magnitude as that appearing in Fig. 2. Since
electron inhomogeneity has been neglected, these insta
ties are caused by the existence of the ion drift, and the

FIG. 2. Dimensionless growth ratev̄ i as a function of the di-
mensionless quantitiesqi and q' for vpe /uVeu510, vDi /v i51.0,
b i55, andbe50, fully taking into account the electron inhomoge
neity.

FIG. 3. Dimensionless real frequencyv̄ r as a function of the
dimensionless quantitiesqi and q' for vpe /uVeu510, vDi /v i

51.0, b i55, and be50, fully taking into account the electron
inhomogeneity.
7-5
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fore are identified as the MTSI and its limit forq'→0, the
IWI @25,26#. In Figs. 5 and 6 we show two cases in whi
the effect of electron inhomogeneity is gradually taken in
account, while keeping the same value for the ion drift. F
ure 5 displays the growth rates obtained for the case wh
the values ofqe andqB are only 20% of those utilized in th
case of Fig. 2, and Fig. 6 depicts the case with values oqe

andqB that are 50% of those used in Fig. 2. The sequenc
figures, Figs. 4, 5, 6, and 2, display the gradual appearanc
the LHDI, which occurs nearqi50, due to electron inhomo
geneity. Regarding the real frequency, for the cases wh
growth rates appear in Figs. 4, 5, 6 we obtained curves
most undistinguishable from that appearing in Fig. 3.

It is interesting to remark that, if the terms containing t
space derivatives of thex i j are neglected in the dispersio
relation, one obtains the MTSI and the IWI, but the LHDI
not found. It is also interesting to remark that, if a WK
approximation is used in Eq.~5! before the introduction of
the Gauss law, instead of Eq.~7! we obtain the following
familiar set of algebraic equations:

FIG. 5. Dimensionless growth ratev̄ i as a function of the di-
mensionless quantitiesqi and q' for vpe /uVeu510, vDi /v i51.0,
b i55, and be50, using qe and qB values that are 20% of the
values used in Fig. 2.

FIG. 4. Dimensionless growth ratev̄ i as a function of the di-
mensionless quantitiesqi and q' for vpe /uVeu510, vDi /v i51.0,
b i55, andbe50, completely neglecting the electron inhomogen
ity.
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v2

c2
E1k~k•E!2k2E1

v2

c2
xJ•E50, ~16!

where the constitutive relation Eq.~8! has been used. Th
solubility condition for Eq.~16! is the usual dispersion rela
tion

detS kikj2k2d i j 1
v2

c2
« i j D 50. ~17!

Solving the dispersion relation given by Eq.~17!, again
we obtain the MTSI and the IWI, with solutions practical
equal to those appearing in Fig. 4, but the LHDI is absen
is seen that the terms with the space derivative of thex i j in
Eq. ~12! are essential for the appearance of the LHDI, a
must be maintained in the dispersion relation, since they
of the same order of other inhomogeneity effects that w
taken into account in the derivation of the components of
dielectric tensor.

In addition to the argument about the terms with spa
derivative of thex i j contributing with inhomogeneity effect
of same order as those taken into account in the evaluatio
the x i j components themselves, we point out the followin
It is well known that, although LHDI is an inherently elec
tromagnetic instability, it has, nevertheless, a strong elec
static component~see, e.g., discussion in Ref.@13# and ref-
erences therein!. It is also well known that electron
inhomogeneities play an important role in the generation
LHDI. Thus, had one considered LHDI electrostatic, as
first approximation, and used Poisson’s equation to de
the electrostatic dispersion relation, one would easily obt
LHDI. Moreover, the dispersion relation obtained would
different from the electrostatic limit of Eq.~17!. This dis-
crepancy was noted by the authors of Ref.@13#, who follow-
ing the steps of previous authors tried to solve it by us
Poisson’s equation instead of they component of Eq.~17!,
which is based upon Ampe`re’s law. They obtained the LHDI
instability, and they have noticed that failure to underta
this remedial procedure would result in a dispersion relat

FIG. 6. Dimensionless growth ratev̄ i as a function of the di-
mensionless quantitiesqi and q' for vpe /uVeu510, vDi /v i51.0,
b i55, and be50, using qe and qB values that are 50% of the
values used in Fig. 2.
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that would not describe LHDI at all. Another difficulty face
by the authors of Ref.@13#, was that they failed to obtain
unified local description of cross-field instabilities in th
lower-hybrid range, having to rely on one dispersion relat
in order to obtain LHDI and another for MTSI and IW
Such a difficulty does not occur in the formulation develop
in the present paper, which relies on dispersion relation~15!,
and which stands as a consistent and unified formulation
the instabilities in the lower-hybrid range of frequencies.

V. CONCLUSIONS

As a closing remark, we reiterate that the electron con
bution to the components of the dielectric tensor, given
Eqs. ~3! and ~4!, has been obtained following a consiste
method that is based on correct description of wave-part
energy exchange@24#. As such, and unlike previous formu
lations employed in the study of LHDI, the dielectric tens
features correct symmetry properties, which guarantee
the imaginary part of the wave frequency obtained from
dispersion relation is not due to spurious nonresonant te

The conventional approaches to describe MTSI have
lied on homogeneous theory with the drifts simply impos
~e.g.,@8#!. In the usual approach to homogeneous theory,
relationship between current density and electric field is
lized in the derivation of the dielectric tensor. For LHDI
high-b plasmas, on the other hand, a hybrid formulation t
utilize electric current and charge density perturbations
been employed~e.g., @3,13#!. In the present formulation we
have also utilized electric current and charge density fluc
tions, which appeared when we took into account Gau
law of electricity in the derivation of the dispersion relatio
Instead of utilizing charge density as anad hocprocedure,
we have shown that the use of Gauss’s law introduces a
with a derivative of the space dependent electric conduc
ity, a term of the same order of other terms responsible
inhomogeneous effects, which have been taken into acc
in the derivation of the dielectric tensor. This term comi
from the use of Gauss’s law has been shown to be esse
to the proper dispersion relation for inhomogeneous me
and cannot be neglected, otherwise the LHDI is not found
a solution of the dispersion relation in the lower-hybr
range. This would be in contrast with simulation studi
which have reported instabilities that are usually regarde
being the LHDI@27–29#, and also in contrast with nonloca
analysis of inhomogeneous equilibria, where unstable s
tions identified as the LHDI have been reported many tim
@30–32#.

The conclusion is that the present formalism, derived f
lowing a consistent formulation that introduces proper sy
metry features, has been shown to accurately desc
instabilities in the lower-hybrid range for a weakly inhom
geneous plasma treated in the local approximation, includ
MTSI, LHDI, and the IWI. It therefore constitutes a unifie
formulation for the local treatment of the instabilities in th
lower-hybrid range, something that was not yet available
the literature.
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APPENDIX A: SOME DETAILS OF THE DERIVATION OF
THE DIELECTRIC TENSOR

According to the previous development of the formalis
using the BGI procedure, the electron contribution can
written as follows@14#:

xJe5xJP1xJB . ~A1!

The componentsxPi j may be obtained from Eqs.~27! of Ref.
@14#.1 For the present case, in which we consider propaga
in the yz plane and only terms corresponding to harmon
n50 andn561 are kept, we obtain the following:

~xP!xx52
A2

ki
enXene

3H 08~ne
2!Z~z0!,

~xP!yy5
1

A2ki
neenXe

3 (
n561

Fn2

ne
2
Hn~ne

2!2
1

Ye

n

ne
2

3S n2

ne
2
Hn~ne

2!2H n8~ne
2!D GZ~zn!,

~xP!zz52
1

2

k'

ki
2

en

Xe

Ye
H0~ne

2!Z8~z0!, ~A2!

~xP!xy52~xP!yx52
i

A2ki
en

Xe

Ye
neH 08~ne

2!Z~z0!,

~xP!xz52~xP!zx52
i

2 ki
enXene

2H 08~ne
2!Z8~z0!,

~xP!yz5~xP!zy52
1

4 ki
en

Xe

Ye
H 08~ne

2!Z(1)~z0!,

where ne
25k'

2 ve
2/Ve

2 , z05v/(A2kive), and zn5(v
2nVe)/(A2 kive). Moreover,Xe5vpe

2 /v2 and Ye5Ve /v.
According to this definition, the sign that appears inz6

1Notice that there is a typographical error in the second line of
~27b! in Ref. @14#. Instead of ‘‘•••1 in]H n

8 (na
2),’’ the correct ex-

pression should be ‘‘•••6 in]H n
8 (na

2).’’
7-7
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5zn561 corresponds to the sign ofn, and corresponds also t
the sign appearing in front ofuVeu. Therefore, the sign is
opposite to that appearing in front ofVe , which carries the
sign of the charge. Accordingly, the quantityne is a negative
quantity, as well asYe .

In the derivation of Eqs.~A2!, we have taken into accoun
that, in the vicinity of the lower-hybrid frequency, the abs
lute value of the arguments of the Fried-Conte functions m
be written as follows:

uz6u5Uv7Ve

A2kive
U.U Ve

A2kive
U5

l i

r Le
,

wherer Le is the electron Larmor radius andl i represents the
parallel wavelength. We have then neglected the contribu
of some terms withn561, as compared to the contributio
of those withn50, considering thatl i@r Le .

The componentsxBi j may be obtained from Ref.@23#,
where a formulation that keeps relativistic effects has b
employed and a more general distribution function has b
considered. However, for the present application a nonr
tivistic formulation is sufficient. From Eqs.~6! of Ref. @23#,
by considering only harmonicsn50 and n561, with c
5p/2 ~which corresponds in Ref.@23# to propagation in the
yz plane!, Maxwellian distribution (l 50), and by use of the
‘‘nonrelativistic inhomogeneous plasma dispersion functio
Gr ,p,m,l instead of the ‘‘relativistic inhomogeneous plasm
dispersion function’’Gr ,q,p,m,l , we arrive at the following:

~xB!xx522 meXene
2~G0,3,0,02ne

2G0,3,0,1!,

~xB!yy52meXe (
n561

@G0,1,0,122nex1e~G1,2,0,12G1,2,1,2!#,

~xB!zz52meXe~G0,1,0,01meNi
2G2,1,0,0!, ~A3!

~xB!xy52~xB!yx5 imeXe (
n561

n

3@G0,1,0,12ne
2~G0,2,0,12G0,2,1,2!

12 nex1e~G1,3,1,12ne
2G1,3,1,2!#,

~xB!xz52~xB!zx5 iN ime
3/2Xene~G1,2,0,02ne

2G1,2,0,1!,

~xB!yz5~xB!zy5Nime
3/2Xe (

n561
@2n neG1,1,0,1

1nx1e~G2,1,0,11G2,2,1,12ne
2G2,2,1,2!#,

where me5mec
2/Te , Ni5cki /v, and xne5n(c/ve)NB/2,

whereNB5ceB /v.
In Eq. ~A3!, G is the nonrelativistic inhomogeneou

plasma dispersion function for the isotropic case, which m
be written as in Eq.~IV-17! of Ref. @21#,
03640
y

n

n
n

a-

’’

y

Gr ,p,m,l~z,b,ha ,na ,xna!

[2 i E
0

`

dt
~ i t !reizte2bt2

~11 ihat !p

3e2(na
2

1xna
2 t2)/(11 ihat)

@Hna~ t !#m

@Sna~ t !# l
I l S Sna~ t !

11 ihat D ,

~A4!

where

Hna~ t !5na
22 i2Snnasincxnat2xna

2 t2,

Sna~ t !5Ana
422na

2 cos 2cxna
2 t21xna

4 t4.

In the above, z5ma(12nYa)5madna and za
5NBN' sinc/Ya512sa . This nonrelativistic form may be
obtained directly from the relativistic inhomogeneous plas
dispersion function, appearing in Ref.@23#, by making
i t→0 andisa→2 i za .

Equation~A4! may be further simplified. For instance, i
the particular case ofn50, Hne(t)5ne

2 and Sne(t)5Ane
4

5Hne(t), and the inhomogeneous plasma dispersion fu
tion for the electron contribution may be written as follow

Gr ,p,m,l~z,b,ze ,ne!

[2 i E
0

`

dt
~ i t !reimad0ate2bt2

~11 i zet !
p

3e2ne
2/(11 i zet)ne

2(m2 l )I l S ne
2

11 i zet
D

52 i ne
2(m2 l )E

0

`

dt
~ i t !reimad0ate2bt2

~11 i zet !
p

Hl S ne
2

11 i zet
D ,

~A5!

whereza5NBN' /Ya .
For the components depending on harmonicsn561, and

weakly inhomogeneous plasmas, such thatuxneu!1, we may
use the following equation, valid fornÞ0:

Gr ,p,m,l.Gr ,p,m,l uxn502
2m

ne
A2meNiSnxnGr 11,p,m,l uxn50 ,

~A6!

where xn5(n/23/2)eB /ki5xne /(A2meNi). For the case of
n561, sincexn is proportional ton, we haveSnxn5x1.
Equation~A6! shows that we only need the plasma disp
sion function evaluated atx150, which means that it is pos
sible to use Eq.~A5! also forn561, by replacingmadna for
mad0a , in the argument of the exponential function.

For the particular case ofp51, with the use of Eq.~69! of
Ref. @33#, Eq. ~A5! may be written as
7-8
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Gr ,1,m,l52 i 2 na
2(m2 l )E

0

`

du ue2u2
Jl

2~A2nau!

3E
0

`

dt~ i t !rei (mad0a2zau2)te2bt2. ~A7!

We now introduce the definitions of the Fried-Conte fun
tion @34#,

Z~z!5 i E
0

`

dy exp~ izy2y2/4!. ~A8!

Using Eq.~A8!, one may express the inhomogeneous plas
dispersion function forc5p/2 in terms of the derivative o
order r of the Fried-Conte function,

Gr ,1,m,l52
2 na

2(m2 l )

~A2maNi!
(r 11)E0

`

du ue2u2
Z(r )

3S mad0a2zau2

A2maNi
D Jl

2~A2nau!, ~A9!

whereZ(r )(z) represents the derivatives ofZ(z) of order r.
For the casep52, it is possible to demonstrate a simil

expression,

Gr ,2,m,l52
na

2(m2 l 21)

~A2maNi!
(r 11)E0

`

du ue2u2
Z(r )

3S mad0a2zau2

A2maNi
D @~2na

2u22 l 2!Jl
2~A2nau!

12na
2u2Jl8

2~A2nau!#, ~A10!

as well as forp53,

Gr ,3,m,l52
na

2(m2 l 22)

3~A2maNi!
(r 11)E0

`

du ue2u2
Z(r )

3S mad0a2zau2

A2maNi
D $~2na

2u22 l 2!@~2na
2u22 l 2!

3Jl
2~A2nau!12na

2u2Jl8
2~A2nau!#2 l 2Jl

2~A2nau!

12na
2u2Jl8

2~A2nau!

12A2na
3u3Jl~A2nau!Jl8~A2nau!%. ~A11!

The approximate forms Eqs.~A9!, ~A10!, and~A11! give
the nonrelativistic dispersion function forxn50, as we need
the terms coming fromn561, according to Eq.~A6!. Using
these explicit expressions for the inhomogeneous plasma
persion function~A3!, after some algebraic manipulation
and taking into account that theZ function only depends on
n through its argument, we arrive at

~xB!xx5
2A2AmeXe

Ni
E

0

`

du u3e2u2
J1

2~A2neu!Z~ z̄0!,
03640
-
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~xB!yy5
A2AmeXe

Nine
2

3 (
n561

S E
0

`

du ue2u2
Z~ z̄n!J1

2~A2neu!

2x12A2 Z8~zn!E
0

`

du u2e2u2

3J1~A2neu!J2~A2neu! D ,

~xB!zz52
Xe

Ni
2E0

`

du u~med0e

2zeu
2!e2u2

J0
2~A2neu!Z8~ z̄0!, ~A12!

~xB!xy52~xB!yx

5 i
2AmeXe

Nine
(

n561
n

3S E
0

`

du u2e2u2
Z~ z̄n!

3J1~A2neu!J18~A2neu!

1A2 x1Z8~zn!E
0

`

du u3e2u2
J2

2~A2neu! D ,

~xB!xz52~xB!zx5 i
A2AmeXe

Ni
E

0

`

du u2e2u2

3J0~A2neu!J1~A2neu!Z8~ z̄0!,

~xB!yz5~xB!zy5
AmeXene

22

Ni

3 (
n561

S n neE
0

`

du ue2u2
Z8~ z̄n!J1

2~A2neu!

12x1n@znZ8~zn!

1Z~zn!#E
0

`

du ue2u2
@J1

2~A2neu!

1A2neu J1~A2neu!J2~A2neu!# D ,

where z̄n5(medne2zeu
2)/(A2meNi)5(v2nVe2k'eBve

2u2/
Ve)/(A2 kive). As mentioned in Sec. II, the ions can b
considered unmagnetized and carry a current in they direc-
tion. Their contribution to the dielectric tensor may be giv
by Eq. ~4!, which is the same as that which appears in R
@13#.
7-9
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Up to this point, we have employed the same notat
used in previous works, in order to relate more directly
expressions useful for the present application to those pr
ously obtained@14,15,22,23#. In what follows, however, it
may be more convenient to modify the notation and write
dielectric tensor in terms of quantities more directly co
nected to the lower-hybrid range. These are the normal
quantities that we have already encountered in Eqs.~3!
and ~4!: q'5ck' /vpe , qi5cki /vpe , qn5(c/vpe)en ,
qB5(c/vpe)eB , andv̄5v/v lh .

It may be useful to remark here that the definitions ofve ,
v i , and vDi used in the present work are different fro
those used in Ref.@13#, while the definition ofvA is the
same appearing in that paper. The nondimensional qua
qn can be related to the ion drift velocity@13#, qn

52(vDi /v i)/Ab i(mi /me), with the relationship betweenqn

andqB , qB5(be1b i)qn/2, whereba58pn0Ta /B0
2. Using

this more convenient notation, the components ofxJe andxJ i

may be written as they appear in Eqs.~3! and~4!, in the main
body of the paper.

APPENDIX B: EVALUATION OF THE SPACE DERIVATIVE
OF THE DIELECTRIC TENSOR

In order to evaluate thex derivative of thex i j compo-
nents, let us start by considering that, when the magn
field inhomogeneity is taken into account in the evaluation
characteristic trajectories, and the distribution function is
panded up to first order in the inhomogeneity, the susce
bility tensor that takes into account the inhomogeneity
fects may be written as a summation of a term incorpora
effects of field gradients and depending on the distribut
function, and another term depending on the derivative of
distribution function,

xJ0.xJ1
0@ f e~en50!,eB#1xJ2

0@ f e8 ,eB50#. ~B1!

The first term in Eq.~B1!, which incorporates effects o
the field inhomogeneity and neglects the density inhomo
neity, is obtained from the derivation made in Ref.@22#,

xJB
052 i

4p

v

e2

me
(

n
E d3pE dt p'L~ f e0!

3SW ne* PW nee
2nune(t)eiD net2ê3ê3

4p

v

e2

me
E d3p

pi

g
L~ f e0!,

~B2!

where the space dependence appears through the quan

Dne~eB!5gv2ckiui2nVe~11eBx!2eB

k'u'
2 c2

2Ve
sinc.

Explicit expressions for other quantities involved can
found in Ref.@22#.
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The second contribution to Eq.~B1!, which is of order
en , will not be important in what follows. It can be obtaine
according to the derivation found in Ref.@15#.

Evaluating the derivative ofx̂ i j
0 , using Eq.~B1!, we get

]xx i j
0 . i eB

4p

v

e2

me
(

n
nVeE d3pE dt~ i t!p'L~ f e0!

3~Sne* ! i~Pne! je
2nune(t)eiD net.

Applying the BGI transformation, following what ha
been made for the componentsx i j themselves in Ref.@22#,
the outcome is the following:

]xx i j 5 i eB

4pe2

mev
(

n
nVeE d3pE dt~ i t!p'L~ f e0!

3~Pne
2 ! i~Pne

1 ! je
2nune(t)eiD net.

Each term in this summation is equivalent to the ter
appearing in thexBi j

0 , multiplied by 2nVeeB( i t). When
taking into account the distribution function, in the nonre
tivistic approximation, the velocity integrals will be the sam
as those appearing in the evaluation of thex i j , with the t
integral corresponding to theGr 11,p,m,l

nr instead of the
Gr ,p,m,l

nr . Proceeding similarly to what we did to obtain Eq
~A3!, we obtain

]xx1150,

]xx225eBme
2XeYe (

n561
n@G1,1,0,122nex1e~G2,2,0,1

2G2,2,1,2!#,

]xxB3350, ~B3!

]xxBS12
21D56eBi me

2XeYe

3 (
n561

n2@G1,1,0,12ne
2~G1,2,0,12G1,2,1,2!

12 nex1e~G2,3,1,12ne
2G2,3,1,2!#,

]xxBS13
31D520,

]xxBS23
32D52eBNime

5/2XeYe

3 (
n561

n2@2neG2,1,0,11x1e

3~G3,1,0,11G3,2,1,12ne
2G3,2,1,2!#.

For the evaluation of these expressions, we use E
~A4!–~A11!, as we did in Appendix A, and obtain
7-10
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]xx i j 52eBh i j , ~B4!

where

hxx50,

h225
meXeYe

Ni
2ne

2 (
n561

nE
0

`

du ue2u2

3Z(1)S medne2zeu
2

A2meNi
D J1

2~A2neu!,

h3350,
ys

u

s

id

K.

u

.

s

m

Ri

03640
h S12
21D56 i

A2meXeYe

Ni
2ne

(
n561

n2E
0

`

du u2e2u2

3Z(1)S medne2zeu
2

A2meNi
D J1~A2neu!

3J18~A2neu!,

h S13
31D50,

h S23
32D5

meXeYe

A2Ni
2ne

(
n561

n2E
0

`

du ue2u2

3Z(2)S medne2zeu
2

A2meNi
D J1

2~A2neu!.
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