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Coupling of low-frequency modes with the complex Ginzburg-Landau equation:
Generalized Zakharov equations
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In this paper we introduce and examine a generalization of the complex Ginzburg-Landau e(C@tidi)
where the self-interaction contained in the cubic term is replaced by a coupling involving the original field and
a low-frequency one. New instabilities arise and a radically new asymptotic dynamical behavior emerges
displaying defect turbulence over wide regions of the parameter s@t@63-651X99)00512-1

PACS numbd(s): 05.45.Jn, 47.54-r

The Zakharov equation&E for shor} describe the slow turbulencg10,11]. However, since we are more interested in
modulational process arising in the nonlinear interaction othe circumstances leading to the turbulence we shall not go
high- and low-frequency waves. The interaction of electronicheyond a local approximation in the present work. As previ-
and ion-acoustic waves in a plasma provides a good examplausly mentioned, Eq(l) has been studied by a number of
of a process governed by the ZE]. In its original form the  authors who mapped its basic behavior onto, &, param-

ZE set is conservative, although not integrdl@ Integrable  eter space. To remind the reader, we reproduce the parameter
dynamics can be obtained from the ZE if one makes somspace in Fig. 1. The figure is relatively self-evident. How-
additional adiabatic assumptions on the dynamics. Then, thever, we note that among all the curves present there, only
full set can be reduced to a nonlinear Salinger equation one is analytical: the BFNBenjamin-Feir-Newellline. Bel-
(NLSE) which can be fully integrated via inverse scatteringlow the BFN line there are stable attracting traveling waves
[3]. From another perspective, the NLSE can also be seen &5W), and above the BFN line TW solutions become un-
a particular form of the much more generic complexstable. Those are the basic properties of the classical CGLE.
Ginzburg-Landau equatiofCGLE) [4]. Unlike the NLSE, We proceed now by pointing out that the nonlinear term of
due to the complex character of the coefficients multiplyingthe CGLE is essentially a cubic one. This term satisfies all
its various terms, the CGLE is nonconservative and modelthe symmetries demanded by the theory but provides only
systems with sources and sinks. Precisely because of theiee lower order saturation for the Hopf bifurcation, certainly
features the CGLE is widely studied as a model equation imot the most generic one. In Rdf12], for instance, the
the field of dynamics of disordered regimes in spatially ex-simple cubic interaction is replaced with more complicated
tended systemf4—7]. Extensive work by a number of au- cubic terms representing the self-interaction of a bidimen-
thors shows that a variety of spatio-temporal patterns occursional vector field. Now in plasma physics or in laser-plasma
ring in a wide range of physical settings can be understoothteractions, for instance, the nonlinear term is not simply
with basis on the solutions of the CGLE-8]. Indeed, the described by polynomial terms like the cubic term we have
universality of the CGLE allows its applicability to several just mentioned. The nonlinear interaction arises as a result of
nonlinear systems like wave interaction in fluids, laser propathe coupling of the slowly varying amplitudé of a high-
gation in nonlinear dieletrics like plasmas, as mentioned
above, and many othef8].

The CGLE is an amplitude equation describing the dy-
namics close to a Hopf bifurcation of the relevant field. The
bifurcation is assumedly saturated by a cubic term such tha L,
the final form of the equation is usually written in one- DEFECT TURBULENCE '
dimension as 24~

4.0 - T T

A=A+ (1+ic,)d2A—(1+ic,)|AI?A QD e

(0 x=0/d(t,x)) with ¢, andc, real constants; symmetry is . NO CHAOS

manifested by the invariance of the equation under
—e'?A and x— —Xx, where ¢ is an arbitrary phase factor.
We note that by taking the limit of large values@fandc,
one obtains the focusing or defocusing NLSE, all depending , o ‘ , ,
on the relative signal of the coefficients. The second spatial  -'® -12 e 08 03 0o
derivative present in Eq1) represents local coupling. Non- :

local coupling is to be considered when the shortest length FIG. 1. The parametric, vsc, plane and the various stable and
scale of the fluctuations becomes smaller than the couplingnstable regions of the complex Ginzburg-Landau equation dynam-
range, what usually happens in situations of well developedts. See Ref[6]. All quantities plotted are dimensionless.
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frequency field, with a low-frequency dynamical field, quasi-static regime exists for whictf p<d2¢. Then, from
¢(x,t). Within the context of plasmag(x,t) represents Eq. (3) one writes¢~ —|A|?, and from Eq.(2) one thus
low-frequency ion-acoustic fluctuations. In any case, wherpbtains the CGLE.
low-frequency dynamical fluctuations are present the appro- In the nonchaotic region of Fig. 1, the pure CGLE gener-
priate set of governing equations describes the coupled dytes only stable, attracting TW’s. We found it convenient to
namics of the slowly varying amplitudeand the full field¢ emphasize this region in the present analysis, since it is pre-
in the form cisely there that the contrast between the CGLE and GZE is
sharper. In addition, since the dynamical behavior is similar
over the entire CGLE regular region, we specialize our in-
vestigation entirely on the parametric pomt=c,=0.

We prepare the initial condition as follows: a stationary
TW of the CGLE,

A=A+ (1+ic,)P2A+(1+ic,) pA—csf(JAIDA, (2)

dEp—aZp=3%Al?, &)
A, (x,t=0)=a,eo* (4)

which is a simple generalization of the conservative Za
kharov equations, themselves obtained in the lifait )
—o as mentioned earlig¢2]. The ZE describe the dynamics
within a fluid approximation, and nonconservative terers- A ;

ergy sources and sinkgan be introduced and justified to Ar(xt=0)=a4[ £,00 +1 ()] ®
model various processes connected to wave interaction WitQg tor the  field we write

small scale granular structures like particles, for instance.

This is the case of plasma physics, for example, where en- d(x,t=0)=—a2+c,f(a?d), (6)
ergy sources represent external beams of particles driving the

relevant waves, and where energy sinks represent wawghich guarantees a stationary solutionaif—0. We take
damping resulting from energy absorption by the plasma para, /a,=0.01, k,= 7k, with k,, as the basic wavevector used
ticles, the latter effect known as Landau dam(dib8—19. In  in the simulations—,=27/L=0.01 whereL is the system
more specific terms, linear sources and sinks may be repréength, ¢, (x) as real uncorrelated random functions of the
sented by the combination of the first and second terms oBpatial coordinate satisfying; o(x)|<1, andi’=—1. Were
the right-hand-side of Eq(2), which takes the form (1 we working with the pure CGLE, perturbations would even-

—k?)A for monochromatic waves if we note that is asso-  tually vanish away and the final solutions would approach
ciated with nondissipative phase dynamics. This kind ofthe TW asymptotic solution

combination yields amplification for small wave vectors—
which is the case when homogeneous beams drive plasma A(x,t)=a,e kK, (7)
waves and dissipation for large enough wave vectors—
which can model linear Landau damping if we are a littlewith Q=c,— (c,—c;)k3=0 [4]. This is why the nonchaotic
economic and represent the symmetric damping in terms ofgion is called so. But let us then examine gray level plots
quadratic terms in the wave vector. More complex, perhapfor |A(x,t)|? as generated by the GZE in Fig. 2; lighter and
nonlocal, spatial dependences could be in principle treatedarker shades represent larger and smaller values of
with help of techniques discussed earlj@0,13. Now the  |A(x,t)|?, respectively. Along with the parameters defined
real component of the nonlinear term can model the nonlinabove, we use(x)=e*—~1—x (an exponential term pro-
ear Landau damping, which occurs in addition to the lineawides fast saturation, but, as said earlier, other nonlinearities
damping when nonresonant wave-particle interaction isliscussed in the literature generate similar requls17),
taken into account. All these features summed up, one magnd c3=0.1 in (a) andcz=1 in (b). The solution initially
obtain a fairly global description of interactions in nonlinear looks like a traveling wave, but after a while, it diverges
continuous systems. Experiments on nonlinear wave in plagrom that behavior. Several simulations were carried out with
mas have been carried out during these last years and whspectral and finite difference methods, both using discretiza-
has been detected is that under the combined action of anions with N=1024 units, but irrespectively of numerical
plification via beam driving and dissipation through linear procedures, all results agree and are conclusive: after an ini-
and nonlinear Landau damping, turbulence does exist and t&al transient where the TW solution seems to be approached,
persistent over a wide range of the control parameters, frorthe dynamics simply deviates from it into a highly turbulent
laboratory to space plasmé$3,15,16. The kind of model motion preceded by the creation of relatively large scale
studied here is suitable for these situations. structures which are decimated as time evolves. The pres-
We shall refer to the se2)—(3) as the generalized Za- ence of turbulence here is somewhat surprising, given the
kharov equation$GZE), noting that we have augmented the fact that in the non chaotic region of the CGLE one should
equation forA with a higher order nonlinear term that shall perhaps expect a quasi-stationary regime allowing for the
control the approach to saturatiori4x)~x?> as x—0, approximation ¢~ —|A|2, which in turn would lead to a
which is higher order than the original cubic term, now re-plane wave solution, but now in the context of the GZE. An
placed with the¢p— A field coupling;c; is taken here as a explanation is thus in order. The easiest way to see what is
real and positive coefficient and our results are highly insengoing on is to derive a dispersion relation that accounts for
sitive on the particular form of (x). Let us stress the fact the linear stability of GZE plane waves. We perturb the plane
that the CGLE can be derived from the pa®—(3) if a  wave(7) with a small field given by

with a,= \/1—k02, is added with a small random perturbing
term of the form
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FIG. 3. Growth rates in the complex Ginzburg-Landau equation
(CGLE) and generalized Zakharov equatiof3ZE) cases forcy
=0.1. In contrast to the CGLE, one of the GZE roots is unstable.
Horizontal dashed line indicatds=0. All quantities plotted are
dimensionless.

stituted by a triplet of monochromatic waves in tAdield
indexed by wave vectotls,—the pump wave—antl,+k—

the daughter waves, plus a low-frequency mode with
wavevectork. Then, from the corresponding linear analysis
of Egs.(2) and(3), a dispersion relation involving andk is
obtained:

[DyD., (f)+k?[ao|* [ DyD— () +k?|a,|?]
2
|a0|4201 (10

5 df
+k +C3—d|a0|2D¢

where D,=w?-k? and D.(f)=—iw=2kk+k?
+df/d|ag|?. Should a quasi-static limit exist where?
<k?, wheneverf =0 the approximate relation could be writ-
ten

[D-(0)—|ag| [ P-(0) —|a,|*]+[ac|*=0,  (11)

which can be shown to be the CGLE dispersion relation
indicating stability below the BFN line—note the CGLE dis-
persion relation is equivalent to the conditiafyy<2¢ dis-
cussed earlier. However, numerical analysis of the GZE dis-
persion relation, Eq.(10), indicates that it has unstable
solutions even below the BFN line, what in fact makes all
the difference between the two cases. In Fig. 3 we represent

FIG. 2. Gray level plots fotA(x,t)|2 as generated by random hot all the roots, but the various distinct growth rates calcu-
initial conditions evolved with the generalized Zakharov equationslated from Eqs.(10) and (11). One of the roots is almost

c3;=0.1in(a) andc3;=1.0 in (b). All quantities plotted are dimen-
sionless.

Aj(x,t)=a.,(t) e®tXt g (t)e ko kX (8)
wherek is a continuous variable aral. (t) are time depen-
dent linear amplitudes of the form. (t)~e'“!, satisfying

|a.|<|a,|. The ¢ field is written as

B(x,t)=—aZ+csf(ad)+a,t) e +c.c. (9)

identical in both cases and another, although not identical, is
stable in both situations. But in contrast to the CGLE, one of
the GZE roots is clearly unstable. When the off-equilibrium
initial plane wave of the GZE tries to decay toward equilib-
rium, a small amount of radiation is produced in ihdield,

a nonexistent feature of the CGLE scheme. The early dy-
namics is close to the one dictated by the CGLE, but even-
tually this small amount of radiation starts to act as a driver
for Eqg. (2) which feedbacks Eq(3). The outcome of the
process reverts in instability for the field and eventually
for the whole dynamics. An investigation of relati¢h0) or

with a,(t) small, and where c.c. stands for complex conju-an inspection of Fig. 3 shows that for the parameters of Fig.
gate. We point out that the basic interacting structure is con2(a), for instance, the fastest growth rake readsI"~0.1
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which is compatible with the respective gray level plot dis-
played there. Another point worth of mentioning is tthats
always positive for the unstable roof’{~0 only whenk
—o), which allows for the presence of a wide range of
length scales in turbulent states.

Equally important is the final asymptotic state of the in-  »gpl
teraction. Further numerical analysis of the dispersion rela-
tion (10) reveals that the larger the coefficient of the saturat-
ing term, the smaller the growth rate. Comparison of Figs.
2(a) and Zb) indeed shows that larger values @f implies 2101
slower development of the instability; a more detailed analy- &
sis also indicates that slower instabilities are associated wittE
lower levels of turbulencéin the present context, lower lev-
els of turbulence means smaller maximum values|#J¢
and ¢). On the other hand, the asymptotic steady states of
both cases indicates a common feature: the modulus o the
field hits the plandA|=0 frequently and irregularly along 70t
temporal and spatial axes what enables to refer to the turbu
lence more specifically as a defect turbulence. The transien
period before turbulence sets in can be more accurately de
scribed as a TW modulated by the presence of low-frequency
modulations resulting frong radiation, as had been already
commented. Modulation can be more easily appreciated it
one replaces the random functions used in the initial simula-
tions with regular functions as follows:

3501

1401

4807 -
A (x,t=0)=a, (e'koTPko)xt giko~Pkp)X) (12)

wherep is an integer. Figure 4 considers the case-0.1 456
and p=3. In the long run, the initial wave eventually
evolves into a turbulent state as in the previous random
cases. But in the transient TW period, Figa4 one can see
more clearly the role of low-frequency fluctuations; the dy-
namics is modulated by the presence of fluctuations display-g
ing precisely the spatial period of the low-frequency wave— +
p=3 in the present situation. As mentioned above, it is the 4g
presence of the low-frequency radiation that provides the
drive to turbulence. Details of the transition to turbulence are
shown in Fig. 4b); we again note that in the initial stages of
the turbulent motion, a series of large localized structures are 384
generated which are destroyed later on.

Defect turbulence does not occur under the BFN line of
the CGLE case. The GZE therefore show some qualitatively
new dynamics as compared to the CGLE. Now, a series ol 0 160 320 480 640 800 960
continuous systems supports low-frequency radiation like the
one represented here by thefield. In laser-plasma physics,
as mentioned earlier, the ponderomotive potential of the FIG. 4. Gray level plots fotA(x,t)|? with nonrandom initial
high-frequency laser amplitude can easily drive low- conditions evolyed_with the GZEc;=0.1, p=3 f';\nd remaini_ng
frequency waves through a coupling similar to what we usé®@rameters as in Fig. 2. A short run (@ and a window showing
in this paper. What we show here is that the mere inclusioﬁhe transition to turbulence ifb). All quantities plotted are dimen-

of this one additional degree-of-freedom alters the global beSIOMess:

havior of the interaction; due to feedback processes, the Prega|=0 repeatedly. We have not analyzed in full details the
ence of a dynamical low-frequengy field leads to instabili-  dynamics in those regions of the parameter space where the
ties absent in the pure cubic case. Moreover, the saturation @lynamics arising from the CGLE is already chaotic. How-
the instabilities have also been discussed. After a period adver, initial investigations show that for moderate values of
time where the solution behaves like a TW modulated by the; andc,, there is no appreciable differences between those
¢ field, the dynamics evolves toward final turbulent statescases and the particular situations analyzed here: in all cases
The larger the coefficient of the saturating term, the longea transient TW evolves into spatio-temporal chaotic patterns
the period where the dynamics resembles a TW one. Theevealing defect turbulence. As low-frequency fluctuations
final asymptotic state, on the other hand, always displayare actually a frequent feature of spatially extended systems,
defect turbulence with the modulus of tAehitting the plane  the subject deserves some attention.
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