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Coupling of low-frequency modes with the complex Ginzburg-Landau equation:
Generalized Zakharov equations

R. Erichsen, L. G. Brunnet, and F. B. Rizzato
Instituto de Fı´sica, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051,

91501-970 Porto Alegre, Rio Grande do Sul, Brazil
~Received 21 June 1999!

In this paper we introduce and examine a generalization of the complex Ginzburg-Landau equation~CGLE!
where the self-interaction contained in the cubic term is replaced by a coupling involving the original field and
a low-frequency one. New instabilities arise and a radically new asymptotic dynamical behavior emerges
displaying defect turbulence over wide regions of the parameter space.@S1063-651X~99!00512-7#

PACS number~s!: 05.45.Jn, 47.54.1r
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The Zakharov equations~ZE for short! describe the slow
modulational process arising in the nonlinear interaction
high- and low-frequency waves. The interaction of electro
and ion-acoustic waves in a plasma provides a good exam
of a process governed by the ZE@1#. In its original form the
ZE set is conservative, although not integrable@2#. Integrable
dynamics can be obtained from the ZE if one makes so
additional adiabatic assumptions on the dynamics. Then,
full set can be reduced to a nonlinear Schro¨dinger equation
~NLSE! which can be fully integrated via inverse scatteri
@3#. From another perspective, the NLSE can also be see
a particular form of the much more generic compl
Ginzburg-Landau equation~CGLE! @4#. Unlike the NLSE,
due to the complex character of the coefficients multiply
its various terms, the CGLE is nonconservative and mod
systems with sources and sinks. Precisely because of t
features the CGLE is widely studied as a model equation
the field of dynamics of disordered regimes in spatially e
tended systems@4–7#. Extensive work by a number of au
thors shows that a variety of spatio-temporal patterns oc
ring in a wide range of physical settings can be underst
with basis on the solutions of the CGLE@4–8#. Indeed, the
universality of the CGLE allows its applicability to sever
nonlinear systems like wave interaction in fluids, laser pro
gation in nonlinear dieletrics like plasmas, as mention
above, and many others@9#.

The CGLE is an amplitude equation describing the d
namics close to a Hopf bifurcation of the relevant field. T
bifurcation is assumedly saturated by a cubic term such
the final form of the equation is usually written in on
dimension as

] tA5A1~11 ic1!]x
2A2~11 ic2!uAu2A ~1!

„] t,x[]/](t,x)… with c1 andc2 real constants; symmetry i
manifested by the invariance of the equation underA
→eiwA and x→2x, wherew is an arbitrary phase factor
We note that by taking the limit of large values ofc1 andc2
one obtains the focusing or defocusing NLSE, all depend
on the relative signal of the coefficients. The second spa
derivative present in Eq.~1! represents local coupling. Non
local coupling is to be considered when the shortest len
scale of the fluctuations becomes smaller than the coup
range, what usually happens in situations of well develo
PRE 601063-651X/99/60~6!/6566~5!/$15.00
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turbulence@10,11#. However, since we are more interested
the circumstances leading to the turbulence we shall no
beyond a local approximation in the present work. As pre
ously mentioned, Eq.~1! has been studied by a number
authors who mapped its basic behavior onto ac1-c2 param-
eter space. To remind the reader, we reproduce the param
space in Fig. 1. The figure is relatively self-evident. Ho
ever, we note that among all the curves present there,
one is analytical: the BFN~Benjamin-Feir-Newell! line. Bel-
low the BFN line there are stable attracting traveling wav
~TW!, and above the BFN line TW solutions become u
stable. Those are the basic properties of the classical CG
We proceed now by pointing out that the nonlinear term
the CGLE is essentially a cubic one. This term satisfies
the symmetries demanded by the theory but provides o
the lower order saturation for the Hopf bifurcation, certain
not the most generic one. In Ref.@12#, for instance, the
simple cubic interaction is replaced with more complicat
cubic terms representing the self-interaction of a bidim
sional vector field. Now in plasma physics or in laser-plas
interactions, for instance, the nonlinear term is not sim
described by polynomial terms like the cubic term we ha
just mentioned. The nonlinear interaction arises as a resu
the coupling of the slowly varying amplitudeA of a high-

FIG. 1. The parametricc1 vs c2 plane and the various stable an
unstable regions of the complex Ginzburg-Landau equation dyn
ics. See Ref.@6#. All quantities plotted are dimensionless.
6566 © 1999 The American Physical Society
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frequency field, with a low-frequency dynamical fiel
f(x,t). Within the context of plasmasf(x,t) represents
low-frequency ion-acoustic fluctuations. In any case, wh
low-frequency dynamical fluctuations are present the app
priate set of governing equations describes the coupled
namics of the slowly varying amplitudeA and the full fieldf
in the form

] tA5A1~11 ic1!]x
2A1~11 ic2!fA2c3f ~ uAu2!A, ~2!

] t
2f2]x

2f5]x
2uAu2, ~3!

which is a simple generalization of the conservative Z
kharov equations, themselves obtained in the limituc1,2u
→` as mentioned earlier@2#. The ZE describe the dynamic
within a fluid approximation, and nonconservative terms~en-
ergy sources and sinks! can be introduced and justified t
model various processes connected to wave interaction
small scale granular structures like particles, for instan
This is the case of plasma physics, for example, where
ergy sources represent external beams of particles driving
relevant waves, and where energy sinks represent w
damping resulting from energy absorption by the plasma p
ticles, the latter effect known as Landau damping@13–15#. In
more specific terms, linear sources and sinks may be re
sented by the combination of the first and second terms
the right-hand-side of Eq.~2!, which takes the form (1
2k2)A for monochromatic waves if we note thatc1 is asso-
ciated with nondissipative phase dynamics. This kind
combination yields amplification for small wave vectors
which is the case when homogeneous beams drive pla
waves and dissipation for large enough wave vector
which can model linear Landau damping if we are a lit
economic and represent the symmetric damping in term
quadratic terms in the wave vector. More complex, perh
nonlocal, spatial dependences could be in principle trea
with help of techniques discussed earlier@10,11#. Now the
real component of the nonlinear term can model the non
ear Landau damping, which occurs in addition to the lin
damping when nonresonant wave-particle interaction
taken into account. All these features summed up, one
obtain a fairly global description of interactions in nonline
continuous systems. Experiments on nonlinear wave in p
mas have been carried out during these last years and
has been detected is that under the combined action of
plification via beam driving and dissipation through line
and nonlinear Landau damping, turbulence does exist an
persistent over a wide range of the control parameters, f
laboratory to space plasmas@13,15,16#. The kind of model
studied here is suitable for these situations.

We shall refer to the set~2!–~3! as the generalized Za
kharov equations~GZE!, noting that we have augmented th
equation forA with a higher order nonlinear term that sha
control the approach to saturation—f (x);x2 as x→0,
which is higher order than the original cubic term, now r
placed with thef2A field coupling;c3 is taken here as a
real and positive coefficient and our results are highly ins
sitive on the particular form off (x). Let us stress the fac
that the CGLE can be derived from the pair~2!–~3! if a
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quasi-static regime exists for which] t
2f!]x

2f. Then, from
Eq. ~3! one writesf;2uAu2, and from Eq.~2! one thus
obtains the CGLE.

In the nonchaotic region of Fig. 1, the pure CGLE gen
ates only stable, attracting TW’s. We found it convenient
emphasize this region in the present analysis, since it is
cisely there that the contrast between the CGLE and GZ
sharper. In addition, since the dynamical behavior is sim
over the entire CGLE regular region, we specialize our
vestigation entirely on the parametric pointc15c250.

We prepare the initial condition as follows: a stationa
TW of the CGLE,

Ao~x,t50!5aoeikox ~4!

with ao5A12ko
2, is added with a small random perturbin

term of the form

A1~x,t50!5a1@j1~x!1 i j2~x!#. ~5!

As for thef field we write

f~x,t50!52ao
21c3f ~ao

2!, ~6!

which guarantees a stationary solution ifa1→0. We take
a1 /ao50.01, ko57kb with kb as the basic wavevector use
in the simulations—kb52p/L50.01 whereL is the system
length,j1,2(x) as real uncorrelated random functions of t
spatial coordinate satisfyinguj1,2(x)u,1, andi 2521. Were
we working with the pure CGLE, perturbations would eve
tually vanish away and the final solutions would approa
the TW asymptotic solution

A~x,t !5aoei (kx2Vt), ~7!

with V5c22(c22c1)ko
250 @4#. This is why the nonchaotic

region is called so. But let us then examine gray level pl
for uA(x,t)u2 as generated by the GZE in Fig. 2; lighter an
darker shades represent larger and smaller values
uA(x,t)u2, respectively. Along with the parameters defin
above, we usef (x)5ex212x ~an exponential term pro
vides fast saturation, but, as said earlier, other nonlinear
discussed in the literature generate similar results@12,17#!,
and c350.1 in ~a! and c351 in ~b!. The solution initially
looks like a traveling wave, but after a while, it diverge
from that behavior. Several simulations were carried out w
spectral and finite difference methods, both using discret
tions with N51024 units, but irrespectively of numerica
procedures, all results agree and are conclusive: after an
tial transient where the TW solution seems to be approach
the dynamics simply deviates from it into a highly turbule
motion preceded by the creation of relatively large sc
structures which are decimated as time evolves. The p
ence of turbulence here is somewhat surprising, given
fact that in the non chaotic region of the CGLE one sho
perhaps expect a quasi-stationary regime allowing for
approximationf;2uAu2, which in turn would lead to a
plane wave solution, but now in the context of the GZE. A
explanation is thus in order. The easiest way to see wha
going on is to derive a dispersion relation that accounts
the linear stability of GZE plane waves. We perturb the pla
wave ~7! with a small field given by
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A1~x,t !5a1~ t ! ei (ko1k)x1a2~ t ! ei (ko2k)x, ~8!

wherek is a continuous variable anda6(t) are time depen-
dent linear amplitudes of the forma6(t);eivt, satisfying
ua6u!uaou. Thef field is written as

f~x,t !52ao
21c3f ~ao

2!1af~ t !eikx1c.c. ~9!

with af(t) small, and where c.c. stands for complex con
gate. We point out that the basic interacting structure is c

FIG. 2. Gray level plots foruA(x,t)u2 as generated by random
initial conditions evolved with the generalized Zakharov equatio
c350.1 in ~a! andc351.0 in ~b!. All quantities plotted are dimen
sionless.
-
n-

stituted by a triplet of monochromatic waves in theA field
indexed by wave vectorsko—the pump wave—andko6k—
the daughter waves, plus a low-frequency mode w
wavevectork. Then, from the corresponding linear analys
of Eqs.~2! and~3!, a dispersion relation involvingv andk is
obtained:

@DfD1~ f !1k2uaou2#@DfD2~ f !1k2uaou2#

1Fk21c3

d f

duaou2DfG2

uaou450, ~10!

where D f[v22k2, and D6( f )[2 iv62kok1k2

1d f /duaou2. Should a quasi-static limit exist wherev2

!k2, wheneverf 50 the approximate relation could be wri
ten

@D1~0!2uaou2#@D2~0!2uaou2#1uaou450, ~11!

which can be shown to be the CGLE dispersion relat
indicating stability below the BFN line—note the CGLE di
persion relation is equivalent to the condition] t

2f!]x
2f dis-

cussed earlier. However, numerical analysis of the GZE
persion relation, Eq.~10!, indicates that it has unstabl
solutions even below the BFN line, what in fact makes
the difference between the two cases. In Fig. 3 we repre
not all the roots, but the various distinct growth rates cal
lated from Eqs.~10! and ~11!. One of the roots is almos
identical in both cases and another, although not identica
stable in both situations. But in contrast to the CGLE, one
the GZE roots is clearly unstable. When the off-equilibriu
initial plane wave of the GZE tries to decay toward equili
rium, a small amount of radiation is produced in thef field,
a nonexistent feature of the CGLE scheme. The early
namics is close to the one dictated by the CGLE, but ev
tually this small amount of radiation starts to act as a dri
for Eq. ~2! which feedbacks Eq.~3!. The outcome of the
process reverts in instability for thef field and eventually
for the whole dynamics. An investigation of relation~10! or
an inspection of Fig. 3 shows that for the parameters of F
2~a!, for instance, the fastest growth rateG readsG;0.1

.

FIG. 3. Growth rates in the complex Ginzburg-Landau equat
~CGLE! and generalized Zakharov equations~GZE! cases forc3

50.1. In contrast to the CGLE, one of the GZE roots is unstab
Horizontal dashed line indicatesG50. All quantities plotted are
dimensionless.
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which is compatible with the respective gray level plot d
played there. Another point worth of mentioning is thatG is
always positive for the unstable root (G→0 only whenk
→`), which allows for the presence of a wide range
length scales in turbulent states.

Equally important is the final asymptotic state of the
teraction. Further numerical analysis of the dispersion re
tion ~10! reveals that the larger the coefficient of the satur
ing term, the smaller the growth rate. Comparison of Fi
2~a! and 2~b! indeed shows that larger values ofc3 implies
slower development of the instability; a more detailed ana
sis also indicates that slower instabilities are associated
lower levels of turbulence~in the present context, lower lev
els of turbulence means smaller maximum values foruAu2
and f). On the other hand, the asymptotic steady state
both cases indicates a common feature: the modulus of tA
field hits the planeuAu50 frequently and irregularly along
temporal and spatial axes what enables to refer to the tu
lence more specifically as a defect turbulence. The trans
period before turbulence sets in can be more accurately
scribed as a TW modulated by the presence of low-freque
modulations resulting fromf radiation, as had been alread
commented. Modulation can be more easily appreciate
one replaces the random functions used in the initial sim
tions with regular functions as follows:

A1~x,t50!5a1 ~ei (ko1pkb)x1ei (ko2pkb)x!, ~12!

wherep is an integer. Figure 4 considers the casec350.1
and p53. In the long run, the initial wave eventuall
evolves into a turbulent state as in the previous rand
cases. But in the transient TW period, Fig. 4~a!, one can see
more clearly the role of low-frequency fluctuations; the d
namics is modulated by the presence of fluctuations disp
ing precisely the spatial period of the low-frequency wave
p53 in the present situation. As mentioned above, it is
presence of the low-frequency radiation that provides
drive to turbulence. Details of the transition to turbulence
shown in Fig. 4~b!; we again note that in the initial stages
the turbulent motion, a series of large localized structures
generated which are destroyed later on.

Defect turbulence does not occur under the BFN line
the CGLE case. The GZE therefore show some qualitativ
new dynamics as compared to the CGLE. Now, a serie
continuous systems supports low-frequency radiation like
one represented here by thef field. In laser-plasma physics
as mentioned earlier, the ponderomotive potential of
high-frequency laser amplitude can easily drive lo
frequency waves through a coupling similar to what we u
in this paper. What we show here is that the mere inclus
of this one additional degree-of-freedom alters the global
havior of the interaction; due to feedback processes, the p
ence of a dynamical low-frequencyf field leads to instabili-
ties absent in the pure cubic case. Moreover, the saturatio
the instabilities have also been discussed. After a perio
time where the solution behaves like a TW modulated by
f field, the dynamics evolves toward final turbulent stat
The larger the coefficient of the saturating term, the lon
the period where the dynamics resembles a TW one.
final asymptotic state, on the other hand, always displ
defect turbulence with the modulus of theA hitting the plane
-
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uAu50 repeatedly. We have not analyzed in full details t
dynamics in those regions of the parameter space where
dynamics arising from the CGLE is already chaotic. Ho
ever, initial investigations show that for moderate values
c1 andc2, there is no appreciable differences between th
cases and the particular situations analyzed here: in all c
a transient TW evolves into spatio-temporal chaotic patte
revealing defect turbulence. As low-frequency fluctuatio
are actually a frequent feature of spatially extended syste
the subject deserves some attention.

FIG. 4. Gray level plots foruA(x,t)u2, with nonrandom initial
conditions evolved with the GZE.c350.1, p53 and remaining
parameters as in Fig. 2. A short run in~a! and a window showing
the transition to turbulence in~b!. All quantities plotted are dimen-
sionless.
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