Otimização de forma e paramétrica de estruturas treliçadas através dos métodos meta-heurísticos Harmony Search e Firefly Algorithm
View/ Open
Date
2013Author
Advisor
Academic level
Master
Type
Subject
Abstract in Portuguese (Brasil)
Otimização estrutural é uma área relativamente nova que vem sendo cada vez mais explorada. Existem muitos métodos clássicos, e outros mais recentes vem surgindo para disputar em eficiência, confiabilidade e rapidez na obtenção de um resultado ótimo. Os algoritmos são classificados em algoritmos determinísticos, que utilizam a informação do gradiente, ou seja, usam os valores das funções e suas derivadas, e os meta-heurísticos, algoritmos de otimização aleatórios que são métodos probabilísticos ...
Otimização estrutural é uma área relativamente nova que vem sendo cada vez mais explorada. Existem muitos métodos clássicos, e outros mais recentes vem surgindo para disputar em eficiência, confiabilidade e rapidez na obtenção de um resultado ótimo. Os algoritmos são classificados em algoritmos determinísticos, que utilizam a informação do gradiente, ou seja, usam os valores das funções e suas derivadas, e os meta-heurísticos, algoritmos de otimização aleatórios que são métodos probabilísticos não baseados em gradiente, ou seja, usam somente a avaliação da função objetivo. São apresentados dois algoritmos meta-heurísticos relativamente recentes: o Harmony Search, baseado na improvisação musical em busca da harmonia perfeita, e o Firefly Algorithm, que é inspirado no comportamento da luz dos vagalumes. Vários exemplos clássicos de treliças 2-D e 3-D considerando otimização paramétrica e de forma, com restrições de tensão, deslocamento, flambagem e frequência natural, são apresentados para demonstrar a eficiência dos métodos. Os resultados são comparados aos de outros autores usando diferentes métodos encontrados na literatura. Os resultados indicam que os algoritmos de otimização estudados neste trabalho são melhores ou tão eficientes quanto os demais. Por fim, os métodos são aplicados à estrutura de um projeto de engenharia adaptado. ...
Abstract
Structural optimization is a relatively new area that has been increasingly exploited. There are many classical methods, and newer are emerging to compete on efficiency, reliability and speed in obtaining an optimal result. The algorithms are classified into deterministic algorithms, which use the gradient information, i.e., use the values of the functions and their derivatives, and meta-heuristic algorithms, random optimization methods which are probabilistic methods not based on gradient, i.e ...
Structural optimization is a relatively new area that has been increasingly exploited. There are many classical methods, and newer are emerging to compete on efficiency, reliability and speed in obtaining an optimal result. The algorithms are classified into deterministic algorithms, which use the gradient information, i.e., use the values of the functions and their derivatives, and meta-heuristic algorithms, random optimization methods which are probabilistic methods not based on gradient, i.e., they use only objective function evaluation. Two relatively recent meta-heuristics algorithms are presented, Harmony Search, based on musical improvisation in search of the perfect harmony, and Firefly Algorithm, which is inspired by the behavior of the light of fireflies. Several benchmarks of 2-D and 3-D trusses considering size and shape optimization, with stress, displacement, buckling and natural frequency constraints, are presented to demonstrate the effectiveness of the methods. The results are compared to the others authors using different methods found in the literature. The results indicate that optimization algorithms studied in this work are better than or as efficient as others. Finally, the methods are applied to the structure of an adapted engineering design. ...
Institution
Universidade Federal do Rio Grande do Sul. Escola de Engenharia. Programa de Pós-Graduação em Engenharia Mecânica.
Collections
-
Engineering (7412)Mechanical Engineering (826)
This item is licensed under a Creative Commons License