Resumo
Nesta tese conseguimos obter uma extensão para a fórmula do volume de tubos de H. Weyl para o caso hiperbólico e obter estimativas para o raio de injetividade em termos de invariantes geométricos/topológicos. Provamos, também, que se M é mínima, compacta e mergulhada em S³; e se Λ é uma das componentes conexas de Λ então, obtivemos uma estimativa por baixo para o vol (Λ) em termos da topologia e da geometria intrínsica de M.
Abstract
In this work we obtain an extension of Weysl's tube formula to the hiperbolic space and estimatives of the radius of injectivity in terms of geometric and topologi- cal invariants. We also prove that if M is a minimal surface, compact and embedded in S³; and if Λ is the connected component of Λ; then obtain a below estimatives for vol (Λ) in terms of the topology and intrinsic geometry of M:
Institución
Universidade Federal do Rio Grande do Sul. Instituto de Matemática. Programa de Pós-Graduaçao em Matemática.