Adsorção de corantes têxteis utilizando biossorventes alternativos
Visualizar/abrir
Data
2012Autor
Orientador
Nível acadêmico
Doutorado
Tipo
Resumo
Os efluentes têxteis, quando lançados nos corpos hídricos, reduzem a penetração da luz solar prejudicando os processos de fotossíntese. Além disso, os corantes têm sido apontados como substâncias potencialmente tóxicas. Em geral, os processos de remoção estão fundamentados em sistemas físicoquímicos seguidos de tratamento biológico. O processo de adsorção, além de apresentar alta eficiência de remoção, ainda apresenta como vantagem a facilidade de operação e a possibilidade de utilização de ads ...
Os efluentes têxteis, quando lançados nos corpos hídricos, reduzem a penetração da luz solar prejudicando os processos de fotossíntese. Além disso, os corantes têm sido apontados como substâncias potencialmente tóxicas. Em geral, os processos de remoção estão fundamentados em sistemas físicoquímicos seguidos de tratamento biológico. O processo de adsorção, além de apresentar alta eficiência de remoção, ainda apresenta como vantagem a facilidade de operação e a possibilidade de utilização de adsorventes de baixo custo. Neste trabalho foram utilizados quatro novos adsorventes alternativos para remoção dos corantes têxteis presentes em soluções aquosas ou efluentes sintéticos. O estudo foi segmentado em três etapas de trabalho. Para a remoção dos corantes RR-194 e DB-53, RB-5 e RO-16 de soluções aquosas, foram testados como adsorventes os seguintes materiais: casca de cupuaçu (CS), talo do açaí (AS) e talo do açaí acidificado (AAS), respectivamente. Para a remoção do corante RR- 120 do efluente sintético, foi avaliada a capacidade adsorvente da microalga verde azulada S. platensis (SP). Com o intuito de comparar a eficiência de remoção da microalga, os testes também foram realizados com carvão ativo comercial. A dessorção do corante RR-120 e a reutilização da microalga foi analisada. Os biossorventes foram caracterizados por espectroscopia FTIR, MEV e curvas de adsorção e dessorção de nitrogênio. Foram realizados estudos cinéticos e de equilíbrio para os sistemas. Para avaliar a capacidade de remoção do corante RR-120 da microalga S. platensis e do carvão ativo comercial, foram analisados os aspectos termodinâmicos do processo. Os estudos utilizando a casca do cupuaçu, o talo do açaí, o talo do açaí acidificado e a microalga S. platensis mostraram que os novos adsorventes são ótimas alternativas de baixo custo para remoção dos corantes têxteis RR-194 e DB- 53, RB-5 e RO-16, e RR-120. Todos os adsorventes apresentaram elevada eficiência de remoção. Os experimentos de dessorção utilizando solução de NaOH 0,50 mol.L-1demonstraram que a microalga S. platensis pode ser reutilizada, com pouca perda de eficiência de remoção, diferentemente do carvão ativo, que, apesar de apresentar uma boa eficiência de remoção, forneceu uma porcentagem de dessorção de cerca de 13%, impossibilitando sua reutilização. A caracterização dos biossorventes mostrou que os grupos hidroxila presentes nos compostos fenólicos e alcoólicos e os carboxilatos devem participar efetivamente do mecanismo de biossorção. Os resultados obtidos com os biossorventes CS, AS e AAS foram mais bem representados pelo modelo de ordem fracionária de Avrami, enquanto que o biossorvente SP foi adequadamente ajustado pelo modelo de ordem geral. O modelo de difusão intra-partícula sugere que a biossorção ocorreu em múltiplas etapas. O equilíbrio foi atingido após 10 e 4 horas de contato dos biossorventes AS e AAS, respectivamente, com os corantes RB-5 e RO-16. O tempo necessário para atingir o equilíbrio entre os corantes RR-194 e DB-53 e o biossorvente CS foi de 8 e 18 horas, respectivamente, enquanto que, para remoção do corante RR-120 com o adsorvente SP e AC, foram necessárias 3 horas. O modelo de isoterma de Sips foi o que melhor representou os sistemas de adsorção utilizando CS, AS e AAS como biossorventes. Para o carvão ativo e para o biossorvente SP, o modelo que melhor se ajustou aos dados experimentais foi o de Liu. A capacidade máxima de adsorção dos corantes RB-5 e RO-16 foi de 52,3 mg.g-1 e 61,3 mg.g-1, respectivamente, utilizando AS como biossorvente e 72,3 mg.g-1 e 156 mg.g-1, respectivamente, utilizando AAS como biossorvente. A capacidade máxima de adsorção de RR-194 e DB-53 foi de 64,1 mg.g-1 e 37,5 mg.g-1, respectivamente, utilizando CS como biossorvente, enquanto que a capacidade máxima de adsorção do corante RR-120 foi de 482,2 mg.g-1 e 267,2 mg.g-1, respectivamente, utilizando SP e AC como adsorvente. ...
Abstract
The textile effluents when launched into water bodies reduce the penetration of sun light harming the photosynthesis processes. Besides this, the dyes have been pointed out as potentially toxic substances. In general, the removal processes are based on physicochemical systems followed by biological treatment. The sorption process, besides presenting high removal efficiency, it still has the advantage of easy operation and the possibility of usage of low cost adsorbents. In this work, four new a ...
The textile effluents when launched into water bodies reduce the penetration of sun light harming the photosynthesis processes. Besides this, the dyes have been pointed out as potentially toxic substances. In general, the removal processes are based on physicochemical systems followed by biological treatment. The sorption process, besides presenting high removal efficiency, it still has the advantage of easy operation and the possibility of usage of low cost adsorbents. In this work, four new alternative adsorbents were used for the removal of textile dye found in aqueous solutions or synthetic effluents. The study was divided in three working steps. For the removal of the dyes RR-194 and DB-53, RB-5 and RO- 16 of aqueous solutions, the following materials were tested as adsorbents: cupuassu shell (CS), aqai stalk (AS) and acidified aqai stalk (AAS), respectively. For the removal of the dye RR-120 of the synthetic effluent the adsorbing capacity of the blue-green microalgae S. platensis (SP) was evaluated. In order to compare the efficiency of microalgae removal, the tests were also performed using commercial activated carbon (AC). The desorption of the dye RR-120 e reusage of the microalgae was analyzed. The biosorbents were characterized through spectroscopy FTIR, MEV and nitrogen adsorption and desorption curves. Kinetic and balance studies for the systems were developed. To evaluate the removal capacity of the dye RR-120 of S. platensis microalgae and the commercial activated carbon, the thermodynamic aspects of the process were analyzed. The studies using the cupuassu shell, aqai stalk, acidified aqai stalk and the S. platensis microalgae showed that the new adsorbents are excelent low cost alternatives for the removal of textile dyes RR-194 and DB-53, RB-5 and RO-16, and RR-120. All adsorbents presented high removal efficiency. The desorption experiments using NaOH 0.50 mol.L-1 solution demonstrated that the S. platensis microalgae may be reused, with a small loss of removal efficiency, different from the activated carbon, which, despite presenting a good removal efficiency, provided a desorption rate of about 13%, preventing its reuse. The characterization of biosorbents showed that the hydroxyl groups found in phenolic and alcoholic compounds and the carboxylates shall effectively participate in the biosorption mechanism. The results obtained with the CS, AS and AAS biosorbents were better represented by the Avrami fractional order model, while the SP biosorbent was properly adjusted by the general order model. The intra-particle diffusion model suggests that the biosorption occurred in multiple stages. The balance was reached after 10 and 4 hours of contact with the biosorbents RB-5 and RO-16 and AS and AAS, respectively. The time needed to reach the balance between the dyes RR-194 and DB-53 and the biosorbent CS was of 8 and 18 hours, respectively, whereas for the removal of the dye RR-120 with the adsorbent SP and AC, 3 hours were needed. The Sips isotherm model was the one which better represented the adsorption systems using CS, AS and AAS as biosorbents. For the activated carbon and the biosorbent SP the model which best suited the experimental data was the Liu’s. The adsorption maximum capacity of the dyes RB-5 and RO-16 were of 52.3 mg.g-1 and 61.3 mg.g-1 using AS as biosorbent, respectively, and 72.3 mg.g-1 and 156 mg.g-1 using AAS as biosorbent, respectively. The adsorption maximum capacity of RR-194 and DB-53 was of 64.1 mg.g-1 and 37.5 mg.g-1 using CS as biosorbent, respectively, whereas the adsorption maximum capacity of the dye RR-120 was of 482.2 mg.g-1 and 267.2 mg.g-1 using SP and AC as adsorbent. ...
Instituição
Universidade Federal do Rio Grande do Sul. Instituto de Química. Programa de Pós-Graduação em Química.
Coleções
-
Ciências Exatas e da Terra (5129)Química (891)
Este item está licenciado na Creative Commons License