O Laplaciano da aplicação de Gauss de uma hipersuperfície imersa em uma variedade homogênea
Fecha
2011Autor
Tutor
Nivel académico
Maestría
Tipo
Resumo
Um resultado bem conhecido para variedades diferenciáveis imersas no Rn+1 é que elas têm curvatura média constante se, e somente se, a aplicação de Gauss é harmônica (Teorema de Ruh-Vilms). Tal resultado é uma consequência direta da fórmula: O objetivo desse trabalho é estender tal fórmula para um contexto mais geral, a saber uma hipersuperfície M imersa em um quociente de um grupo de Lie G por um subgrupo H compacto, de tal forma que o resultado obtido por Ruh- Vilms ainda seja válido. Assumir ...
Um resultado bem conhecido para variedades diferenciáveis imersas no Rn+1 é que elas têm curvatura média constante se, e somente se, a aplicação de Gauss é harmônica (Teorema de Ruh-Vilms). Tal resultado é uma consequência direta da fórmula: O objetivo desse trabalho é estender tal fórmula para um contexto mais geral, a saber uma hipersuperfície M imersa em um quociente de um grupo de Lie G por um subgrupo H compacto, de tal forma que o resultado obtido por Ruh- Vilms ainda seja válido. Assumiremos como hipótese que G terá uma métrica pseudo-Riemanniana bi-invariante e que exista um campo de vetores n normal a M satisfazendo /n,n/ = 1 em M. Os resultados obtidos nesta dissertação são baseados em dois trabalhos: Constant mean curvature hypersurfaces in a Lie group with a bi-invariant metric e Gauss Map Harmonicity and Mean Curvature of a Hypersurface in a Homogeneous Manifold, aqui denotados por [1] e [2]. Nosso resultado principal (Teorema 2) vem a generalizar o Teorema 4.3 de [2], substituindo a hipótese da métrica Riemanniana por uma métrica pseudo-Riemanniana. ...
Abstract
A well known result for immersed manifolds in Rn+1 is the Ruh-Vilms Theorem, which states that a manifold has constant mean curvature if and only if its Gauss map is harmonic. This result is an immediate consequence of the formula: This work intends to extend this formula for the more general case of an immersed hypersurface M in a quotient of a Lie Group G by a compact Lie subgroup H, in order to generalize Ruh-Vilms Theorem for such ambient space. We will assume that G has a semi-Riemannian b ...
A well known result for immersed manifolds in Rn+1 is the Ruh-Vilms Theorem, which states that a manifold has constant mean curvature if and only if its Gauss map is harmonic. This result is an immediate consequence of the formula: This work intends to extend this formula for the more general case of an immersed hypersurface M in a quotient of a Lie Group G by a compact Lie subgroup H, in order to generalize Ruh-Vilms Theorem for such ambient space. We will assume that G has a semi-Riemannian bi-invariant metric, and that there exists a vector eld normal to M which satis es /n,n/ = 1 in M. The results obtained on this work are based in two papers: Constant mean curvature hypersurfaces in a Lie group with a bi-invariant metric and Gauss Map Harmonicity and Mean Curvature of a Hypersurface in a Homogeneous Manifold, cited in this work as [1] and [2]. Our main result (Theorem 2) generalizes Theorem 4.3 of [2], replacing the Riemannian metric in the hypothesis with a semi-Riemannian metric. ...
Institución
Universidade Federal do Rio Grande do Sul. Instituto de Matemática. Programa de Pós-Graduação em Matemática.
Colecciones
-
Ciencias Exactas y Naturales (5143)Matemática (367)
Este ítem está licenciado en la Creative Commons License