Propriedades espectrais de um grafo
Fecha
2011Autor
Tutor
Nivel académico
Maestría
Tipo
Resumo
Associadas a um grafo G, temos a matriz de adjacência A(G) e a matriz laplaciana L(G). Este trabalho descreve algumas propriedades dessas matrizes e de seus autovalores em relação a características estruturais do grafo. Veremos que, em geral, somente o espectro de G, isto é, conjunto de autovalores de A(G), não é capaz de revelar todas as informações a respeito do grafo. Apresentaremos também uma nova cota superior para a soma dos k maiores autovalores laplacianos de uma árvore com n vértices, ...
Associadas a um grafo G, temos a matriz de adjacência A(G) e a matriz laplaciana L(G). Este trabalho descreve algumas propriedades dessas matrizes e de seus autovalores em relação a características estruturais do grafo. Veremos que, em geral, somente o espectro de G, isto é, conjunto de autovalores de A(G), não é capaz de revelar todas as informações a respeito do grafo. Apresentaremos também uma nova cota superior para a soma dos k maiores autovalores laplacianos de uma árvore com n vértices, para k 1, . . . , ng}. Esse limite nos permitirá demonstrar que, dentre todas as árvores de n vértices, a árvore com energia laplaciana máxima é a estrela Sn, o que foi conjecturado por Radenkovi¢ e Gutman [18]. ...
Abstract
Associated with a graph G, we have the adjacency matrix A(G) and the Laplacian matrix L(G). This work relates properties of these matrices and their eigenvalues to structural characteristics of the graph. We will see that, in general, the spectrum of G, namely the set of eigenvalues of A(G), does not reveal all the information about the graph. We will also present a new upper bound on the sum of the k largest Laplacian eigenvalues of a tree with n vertices, where k 1, . . . , ng}. This result i ...
Associated with a graph G, we have the adjacency matrix A(G) and the Laplacian matrix L(G). This work relates properties of these matrices and their eigenvalues to structural characteristics of the graph. We will see that, in general, the spectrum of G, namely the set of eigenvalues of A(G), does not reveal all the information about the graph. We will also present a new upper bound on the sum of the k largest Laplacian eigenvalues of a tree with n vertices, where k 1, . . . , ng}. This result is used to establish that the n-vertex star Sn has the highest Laplacian energy over all n-vertex trees, which answers a rmatively to a question raised by Radenkovi¢ and Gutman [18]. ...
Institución
Universidade Federal do Rio Grande do Sul. Instituto de Matemática. Programa de Pós-Graduação em Matemática.
Colecciones
-
Ciencias Exactas y Naturales (5141)Matemática Aplicada (285)
Este ítem está licenciado en la Creative Commons License