Show simple item record

dc.contributor.advisorBonorino, Leonardo Prangept_BR
dc.contributor.authorPhilippsen, Eduardo Henriquept_BR
dc.date.accessioned2024-08-03T06:31:11Zpt_BR
dc.date.issued2024pt_BR
dc.identifier.urihttp://hdl.handle.net/10183/276872pt_BR
dc.description.abstractNeste trabalho, obtemos estimativas L∞ de soluções de equações diferenciais não lineares em termos do primeiro autovalor do domínio. Demonstramos que, para certas classes de problemas, se o primeiro autovalor for grande, o valor máximo da solução é pequeno. Posteriormente, conseguimos obter estimativas L∞ locais para soluções de um problema usando, entre outras coisas, o processo de interação de Moser. Como consequência, provamos que, dentre todas as soluções de um problema com medida do domínio prescrita, existe um subconjunto em Rn com essa medida, onde está definida uma subsolução que atinge a altura máxima.pt_BR
dc.description.abstractIn this work, we obtain L∞ estimates of solutions to nonlinear differential equations in terms of the first eigenvalue of the domain. We show that for certain classes of problems, if the first eigenvalue is large, the maximum value of the solution is small. Subsequently, we are able to obtain local L∞ estimates for solutions to a problem using, among other things, Moser’s iteration process. As a consequence, we prove that among all solutions of a problem with prescribed domain measure, there exists a subset in Rn with that measure, where a subsolution is defined that reaches the maximum height.en
dc.format.mimetypeapplication/pdfpt_BR
dc.language.isoporpt_BR
dc.rightsOpen Accessen
dc.subjectp-Laplaciano fracionáriopt_BR
dc.subjectFractional p-Laplacianen
dc.subjectNonlinear elliptic problemsen
dc.subjectProblemas elípticos não linearespt_BR
dc.subjectProblemas de auto-valorespt_BR
dc.subjectEigenvalue problemen
dc.subjectOptimal estimatesen
dc.titleEstimativas para soluções e existência de soluções optimais para problemas envolvendo o p-Laplaciano fracionáriopt_BR
dc.title.alternativeEstimates for solutions and existence of optimal solutions for problems involving the fractional p-Laplacian en
dc.typeTesept_BR
dc.identifier.nrb001207694pt_BR
dc.degree.grantorUniversidade Federal do Rio Grande do Sulpt_BR
dc.degree.departmentInstituto de Matemática e Estatísticapt_BR
dc.degree.programPrograma de Pós-Graduação em Matemáticapt_BR
dc.degree.localPorto Alegre, BR-RSpt_BR
dc.degree.date2024pt_BR
dc.degree.leveldoutoradopt_BR


Files in this item

Thumbnail
   

This item is licensed under a Creative Commons License

Show simple item record