DFA and DCCA estimation in the presence of missing data
dc.contributor.advisor | Prass, Taiane Schaedler | pt_BR |
dc.contributor.author | Neimaier, Alisson Silva | pt_BR |
dc.date.accessioned | 2024-08-02T06:27:29Z | pt_BR |
dc.date.issued | 2024 | pt_BR |
dc.identifier.uri | http://hdl.handle.net/10183/276839 | pt_BR |
dc.description.abstract | Técnicas tradicionais de análise de associação não se aplicam ou produzem resultados pouco confiáveis quando aplicadas a séries temporais não estacionárias. Portanto, técnicas alternativas que possam abordar efetivamente as limitações dos métodos convencionais e fornecer resultados mais precisos e robustos nesse tipo de dado são de extrema importância. Duas dessas técnicas são a Análise de Flutuação Destendenciada (DFA) e a Análise de Correlação-Cruzada Destendenciada (DCCA), que são meios indiretos de quantificar variância e correlação-cruzada em séries temporais estacionárias com tendência e são comumente empregadas para estudar propriedades de séries temporais no contexto de longa dependência. Os resultados obtidos para as funções DFA e DCCA são válidos apenas quando as séries temporais estão completas. No entanto, comumente séries temporais observadas podem conter dados faltantes. Este trabalho concentra-se no estudo do comportamento da DFA e DCCA em cenários com um volume considerável de valores ausentes, utilizando uma variedade de métodos clássicos de imputação. Contribuímos ainda com uma adaptação inovadora das Arvores de Regressão Probabilísticas para o preenchimento de séries temporais com dados faltantes. Adicionalmente, um resultado assintótico para a matriz de covariância correspondente às séries temporais preenchidas com imputação de média é derivado, e seu impacto nos valores esperados das funções DFA e DCCA é analisado empiricamente. | pt_BR |
dc.description.abstract | Traditional association analysis techniques do not apply or yield unreliable results when applied to non-stationary time series, therefore alternative techniques that can effectively address the limitations of conventional methods and provide more accurate and robust results under non-stationarity are of utmost importance. Two widely applied techniques in this context are the Detrended Fluctuation Analysis (DFA) and Detrended Cross-Correlation Analysis (DCCA), which are indirect means to quantify variance and cross-correlation in trend-stationary time series, commonly employed in studying properties of time series in the context of long-range dependence. The results derived for the DFA and DCCA functions are only valid when the time series are complete. However, in practice, often observed time series can contain missing data. This work is focused on studying the behavior of DFA and DCCA in time series with short-range dependence with a considerable volume of missing values using a diverse array of classical imputation methods, regression trees, and a novel adaptation of the Probabilistic Regression Trees. Additionally, an asymptotic result for the covariance matrix corresponding to the time series imputed using the observed mean is derived, and its impact on the expected values of the DFA and DCCA functions is empirically analyzed. | en |
dc.format.mimetype | application/pdf | pt_BR |
dc.language.iso | eng | pt_BR |
dc.rights | Open Access | en |
dc.subject | Séries temporais | pt_BR |
dc.subject | Arvore de decisoes | pt_BR |
dc.title | DFA and DCCA estimation in the presence of missing data | pt_BR |
dc.type | Dissertação | pt_BR |
dc.contributor.advisor-co | Pumi, Guilherme | pt_BR |
dc.identifier.nrb | 001207337 | pt_BR |
dc.degree.grantor | Universidade Federal do Rio Grande do Sul | pt_BR |
dc.degree.department | Instituto de Matemática e Estatística | pt_BR |
dc.degree.program | Programa de Pós-Graduação em Estatística | pt_BR |
dc.degree.local | Porto Alegre, BR-RS | pt_BR |
dc.degree.date | 2024 | pt_BR |
dc.degree.level | mestrado | pt_BR |
Files in this item
This item is licensed under a Creative Commons License
-
Exact and Earth Sciences (5129)Statistics (27)