Tuning of multivariable decentralized controllers through the ultimate-point method
dc.contributor.author | Campestrini, Lucíola | pt_BR |
dc.contributor.author | Stevanatto Filho, Luiz Carlos | pt_BR |
dc.contributor.author | Bazanella, Alexandre Sanfelici | pt_BR |
dc.date.accessioned | 2011-01-29T06:00:44Z | pt_BR |
dc.date.issued | 2009 | pt_BR |
dc.identifier.issn | 1063-6536 | pt_BR |
dc.identifier.uri | http://hdl.handle.net/10183/27624 | pt_BR |
dc.description.abstract | A successful method for tuning single-loop PID controllers is the ultimate-point method. This method is based on the identification of the ultimate point of the process’ frequency response followed by its shifting, through appropriate choices of the controller’s parameters, to a specified location of the complex plane. This paper presents an extension of the ultimate-point method to the tuning of decentralized controllers for multivariable processes. | en |
dc.format.mimetype | application/pdf | pt_BR |
dc.language.iso | eng | pt_BR |
dc.relation.ispartof | IEEE transactions on control systems technology. Piscataway. Vol. 17, no. 6 (Nov. 2009), p. 1270-1281 | pt_BR |
dc.rights | Open Access | en |
dc.subject | Controle automático | pt_BR |
dc.subject | Characteristic loci | en |
dc.subject | Multivariable decentralized control | en |
dc.subject | PID control | en |
dc.subject | Relay-feedback experiment | en |
dc.subject | Stability margins | en |
dc.subject | Ultimate-point method | en |
dc.subject | Ziegler–Nichols formulas | en |
dc.title | Tuning of multivariable decentralized controllers through the ultimate-point method | pt_BR |
dc.type | Artigo de periódico | pt_BR |
dc.identifier.nrb | 000736410 | pt_BR |
dc.type.origin | Estrangeiro | pt_BR |
Files in this item
This item is licensed under a Creative Commons License
-
Journal Articles (40917)Engineering (2456)