Mostrar el registro sencillo del ítem

dc.contributor.authorCoelho, Zaqueupt_BR
dc.contributor.authorLopes, Artur Oscarpt_BR
dc.contributor.authorRocha, Luiz Fernando Carvalho dapt_BR
dc.date.accessioned2011-01-26T05:59:13Zpt_BR
dc.date.issued1995pt_BR
dc.identifier.issn0002-9939pt_BR
dc.identifier.urihttp://hdl.handle.net/10183/27487pt_BR
dc.description.abstractWe consider a class A of affine interval exchange maps of the interval and we analyse several ergodic properties of the elements of this class, among them the existence of absolutely continuous invariant probability measures. The maps of this class are parametrised by two values a and b , where a , b є (0, 1) . There is a renormalization map T defined from A to itself producing an attractor given by the set R of pure rotations, i.e. the set of ( a , b) such that b = 1-a . The density of the absolutely continuous invariant probability and the rotation number of the elements of the class d are explicitly calculated. We also show how the continued fraction expansion of this rotation number can be obtained from the renormalization map.en
dc.format.mimetypeapplication/pdfpt_BR
dc.language.isoengpt_BR
dc.relation.ispartofProceedings of the American Mathematical Society. Providence, RI. Vol. 123, no. 11 (nov. 1995), p. 3533-3542.pt_BR
dc.rightsOpen Accessen
dc.subjectEquações diferenciais : Sistemas dinamicos : Probabilidade : Medidas invariantes : Transformacoes intervalares afins : Ergodicidade : Atratorpt_BR
dc.titleAbsolutely continuous invariant mesures for a class of affine interval exchange mapspt_BR
dc.typeArtigo de periódicopt_BR
dc.identifier.nrb000141010pt_BR
dc.type.originEstrangeiropt_BR


Ficheros en el ítem

Thumbnail
   

Este ítem está licenciado en la Creative Commons License

Mostrar el registro sencillo del ítem