Mostrar registro simples

dc.contributor.authorMane, Ricardopt_BR
dc.contributor.authorRocha, Luiz Fernando Carvalho dapt_BR
dc.date.accessioned2011-01-26T05:59:12Zpt_BR
dc.date.issued1992pt_BR
dc.identifier.issn0002-9939pt_BR
dc.identifier.urihttp://hdl.handle.net/10183/27484pt_BR
dc.description.abstractWe prove that Julia sets are uniformly perfect in the sense of Pommerenke (Arch. Math. 32 (1979), 192-199). This implies that their linear density of logarithmic capacity is strictly positive, thus implying that Julia sets are regular in the sense of Dirichlet. Using this we obtain a formula for the entropy of invariant harmonic measures on Julia sets. As a corollary we give a very short proof of Lopes converse to Brolin's theorem.en
dc.format.mimetypeapplication/pdfpt_BR
dc.language.isoengpt_BR
dc.relation.ispartofProceedings of the American Mathematical Society. Providence, RI. Vol. 116, no. 1 (sept. 1992), p. 251-257.pt_BR
dc.rightsOpen Accessen
dc.subjectTeoria ergódicapt_BR
dc.subjectEntropia : Medidas harmonicaspt_BR
dc.subjectConjuntos de juliapt_BR
dc.titleJulia sets are uniformly perfectpt_BR
dc.typeArtigo de periódicopt_BR
dc.identifier.nrb000054805pt_BR
dc.type.originEstrangeiropt_BR


Thumbnail
   

Este item está licenciado na Creative Commons License

Mostrar registro simples