Julia sets are uniformly perfect
dc.contributor.author | Mane, Ricardo | pt_BR |
dc.contributor.author | Rocha, Luiz Fernando Carvalho da | pt_BR |
dc.date.accessioned | 2011-01-26T05:59:12Z | pt_BR |
dc.date.issued | 1992 | pt_BR |
dc.identifier.issn | 0002-9939 | pt_BR |
dc.identifier.uri | http://hdl.handle.net/10183/27484 | pt_BR |
dc.description.abstract | We prove that Julia sets are uniformly perfect in the sense of Pommerenke (Arch. Math. 32 (1979), 192-199). This implies that their linear density of logarithmic capacity is strictly positive, thus implying that Julia sets are regular in the sense of Dirichlet. Using this we obtain a formula for the entropy of invariant harmonic measures on Julia sets. As a corollary we give a very short proof of Lopes converse to Brolin's theorem. | en |
dc.format.mimetype | application/pdf | pt_BR |
dc.language.iso | eng | pt_BR |
dc.relation.ispartof | Proceedings of the American Mathematical Society. Providence, RI. Vol. 116, no. 1 (sept. 1992), p. 251-257. | pt_BR |
dc.rights | Open Access | en |
dc.subject | Teoria ergódica | pt_BR |
dc.subject | Entropia : Medidas harmonicas | pt_BR |
dc.subject | Conjuntos de julia | pt_BR |
dc.title | Julia sets are uniformly perfect | pt_BR |
dc.type | Artigo de periódico | pt_BR |
dc.identifier.nrb | 000054805 | pt_BR |
dc.type.origin | Estrangeiro | pt_BR |
Este item está licenciado na Creative Commons License
-
Artigos de Periódicos (40281)Ciências Exatas e da Terra (6158)