Mostrar el registro sencillo del ítem

dc.contributor.authorRicco, Rafael de Agostinhopt_BR
dc.contributor.authorZiegelmann, Flavio Augustopt_BR
dc.date.accessioned2024-02-09T05:05:42Zpt_BR
dc.date.issued2023pt_BR
dc.identifier.issn1679-0731pt_BR
dc.identifier.urihttp://hdl.handle.net/10183/271732pt_BR
dc.description.abstractWe propose a two-fold empirical study applying the concept of realized semicovariances as introduced by Bollerslev et al. (2020): in the first part of the paper we aim to estimate and forecast the realized volatility of an equally weighted portfolio formed by Brazilian B3 asset returns, whereas in the second part we search and find an optimum portfolio for these returns. In both parts we use high frequency data of ten assets from different segments and among the most negotiated in B3 financial market from July 2018 to January 2021. In addition, we investigate whether a Markov Switching strategy fits well to our volatility modeling approach considering that our observed data starts some time before the Covid-19 pandemic and spans well into the pandemic period. Machine Learning Regularization (LASSO) methods are employed to select covariates and potentially improve volatility estimation and forecasting. In the portfolio optimization analysis we see that under higher frequency rebalancing periods, minimum variance portfolios using the negative semicovariance matrices present better performances in terms of risk-adjusted returns compared to those that use the standard realized covariance matrices. In general we see that the realized semicovariances bring improvements to the solutions of our two problems.en
dc.format.mimetypeapplication/pdfpt_BR
dc.language.isoporpt_BR
dc.relation.ispartofRevista brasileira de finanças. Rio de Janeiro. Vol. 21, n. 3 (Aug. 2023), p. 99 - 122pt_BR
dc.rightsOpen Accessen
dc.subjectDados de alta frequênciapt_BR
dc.subjectHigh-frequency dataen
dc.subjectVolatility forecastingen
dc.subjectPrevisão de volatilidadept_BR
dc.subjectRealized semicovariancesen
dc.subjectPortfóliopt_BR
dc.subjectPortfolio optimizationen
dc.subjectMarkov switchingen
dc.subjectLASSOen
dc.subjectEconomic performanceen
dc.titleRealized semicovariances : empirical applications to volatility forecasting and portfolio optimizationpt_BR
dc.typeArtigo de periódicopt_BR
dc.identifier.nrb001177030pt_BR
dc.type.originNacionalpt_BR


Ficheros en el ítem

Thumbnail
   

Este ítem está licenciado en la Creative Commons License

Mostrar el registro sencillo del ítem