Mostrar registro simples

dc.contributor.advisorScherer, Jonatas Ostpt_BR
dc.contributor.authorHarras, Lucas Martinspt_BR
dc.date.accessioned2024-02-08T05:03:40Zpt_BR
dc.date.issued2023pt_BR
dc.identifier.urihttp://hdl.handle.net/10183/271696pt_BR
dc.description.abstractThis study conducts a comprehensive bibliometric analysis to evaluate the trends, impact, and global contributions of academic articles focusing on agile methodologies and Artificial Intelligence (AI). For this, it used the Scopus’ database of articles, and Bibliometrix, a Rstudio package to visualize data. Utilizing metrics such as “Total Citations” and “TC per Year,” the study provides insights into the influence and significance of individual papers in the field. The findings indicate a substantial increase in research production, especially from countries like the United States, Italy, and India, demonstrating a dynamic and evolving international academic landscape. Notably, emerging countries like Pakistan have also become contributors in recent years. The study also identifies a shift in research focus towards AI and agile methodologies, that could be justified with the recent expansion of Industry 4.0 studies. Articles by key authors, such as Meinert E (2020) and Hayat F (2019), have demonstrated considerable impact within a short time frame, highlighting the rapidly evolving nature of the field. This study serves as a resource for researchers, and industry professionals looking to understand the current state and future directions of academic research in agile methodologies and AI.en
dc.format.mimetypeapplication/pdfpt_BR
dc.language.isoengpt_BR
dc.rightsOpen Accessen
dc.subjectSimpósio de Engenharia de Produção (pt_BR
dc.subjectAgile methoden
dc.subjectInteligência artificialpt_BR
dc.subjectArtificial intelligenceen
dc.subjectAnálise bibliométrica e sistemáticapt_BR
dc.subjectBibliometric analysisen
dc.titleBibliometric analysis of agile methods and artificial intelligencept_BR
dc.title.alternativeAnálise bibliométrica de métodos ágeis com inteligência artificial pt
dc.typeTrabalho de conclusão de graduaçãopt_BR
dc.identifier.nrb001186206pt_BR
dc.degree.grantorUniversidade Federal do Rio Grande do Sulpt_BR
dc.degree.departmentCampus Litoral Nortept_BR
dc.degree.localTramandaí, BR-RSpt_BR
dc.degree.date2023pt_BR
dc.degree.graduationEngenharia de Serviços – Litoral Norte: Bachareladopt_BR
dc.degree.levelgraduaçãopt_BR


Thumbnail
   

Este item está licenciado na Creative Commons License

Mostrar registro simples