Algumas estimativas de autovalor e da média de auto-função do laplaciano de variedades riemannianas compactas
View/ Open
Date
2010Author
Advisor
Academic level
Doctorate
Type
Abstract in Portuguese (Brasil)
Seja Ω uma variedade riemanniana compacta tal que ∂Ω = M é convexo em média e com curvatura de Ricci limitada inferiormente por (n - 1)k > 0. Neste trabalho, obtemos uma estimativa superior da média de uma autofunção do problema de Dirichlet Δu = -u e u│M = 0 e uma estimativa inferior do seu respectivo autovalor. Também obtemos uma estimativa superior para o primeiro autovalor positivo de Ω. Quando M é estritamente convexo, estabelecemos uma relação entre um autovalor do laplaciano Ω e o primei ...
Seja Ω uma variedade riemanniana compacta tal que ∂Ω = M é convexo em média e com curvatura de Ricci limitada inferiormente por (n - 1)k > 0. Neste trabalho, obtemos uma estimativa superior da média de uma autofunção do problema de Dirichlet Δu = -u e u│M = 0 e uma estimativa inferior do seu respectivo autovalor. Também obtemos uma estimativa superior para o primeiro autovalor positivo de Ω. Quando M é estritamente convexo, estabelecemos uma relação entre um autovalor do laplaciano Ω e o primeiro autovalor positivo de M. Além disso, no caso em que M é convexo em média e a curvatura de Ricci de Ω positiva, obtemos uma estimativa da área de M em função da dimensão e do volume de Ω e do ínfimo H0 da curvatura média H de M. ...
Abstract
Let Ω be a compact Riemannian manifold such that Ω = M is mean convex and with Ricci curvature bounded below by (n - 1)k > 0. In this work, we obtain an upper bound for the mean of an eigenfunction of the Dirichlet problem Δu = -u and u│M = 0 and a lower bound for the corresponding eigenvalue. We also obtain an upper bound for the first positive eigenvalue of Ω. If M is strictly convex, we obtain a relation between an eigenvalue of the Laplacian of Ω and the first positive eigenvalue of M. If M ...
Let Ω be a compact Riemannian manifold such that Ω = M is mean convex and with Ricci curvature bounded below by (n - 1)k > 0. In this work, we obtain an upper bound for the mean of an eigenfunction of the Dirichlet problem Δu = -u and u│M = 0 and a lower bound for the corresponding eigenvalue. We also obtain an upper bound for the first positive eigenvalue of Ω. If M is strictly convex, we obtain a relation between an eigenvalue of the Laplacian of Ω and the first positive eigenvalue of M. If M is mean convex and has positive Ricci curvature, we obtain an estimative of the area of M in terms of the dimension and the volume of Ω and in terms of the infimum H0 of the mean curvature H of M. ...
Institution
Universidade Federal do Rio Grande do Sul. Instituto de Matemática. Programa de Pós-Graduação em Matemática.
Collections
-
Exact and Earth Sciences (5129)Mathematics (366)
This item is licensed under a Creative Commons License