Immobilization of glycoside hydrolase families GH1, GH13, and GH70 : state of the art and perspectives
View/ Open
Date
2016Author
Type
Subject
Abstract
Glycoside hydrolases (GH) are enzymes capable to hydrolyze the glycosidic bond between two carbohydrates or even between a carbohydrate and a non-carbohydrate moiety. Because of the increasing interest for industrial applications of these enzymes, the immobilization of GH has become an important development in order to improve its activity, stability, as well as the possibility of its reuse in batch reactions and in continuous processes. In this review, we focus on the broad aspects of immobili ...
Glycoside hydrolases (GH) are enzymes capable to hydrolyze the glycosidic bond between two carbohydrates or even between a carbohydrate and a non-carbohydrate moiety. Because of the increasing interest for industrial applications of these enzymes, the immobilization of GH has become an important development in order to improve its activity, stability, as well as the possibility of its reuse in batch reactions and in continuous processes. In this review, we focus on the broad aspects of immobilization of enzymes from the specific GH families. A brief introduction on methods of enzyme immobilization is presented, discussing some advantages and drawbacks of this technology. We then review the state of the art of enzyme immobilization of families GH1, GH13, and GH70, with special attention on the enzymes -glucosidase, -amylase, cyclodextrin glycosyltransferase, and dextransucrase. In each case, the immobilization protocols are evaluated considering their positive and negative aspects. Finally, the perspectives on new immobilization methods are briefly presented. ...
In
Molecules. Basel, Switzerland. Vol. 21, n. 8 (Aug. 2016), p. 1-38
Source
Foreign
Collections
-
Journal Articles (40281)Agricultural Sciences (3967)
This item is licensed under a Creative Commons License