Antimicrobial high-density polyethylene (HDPE)/ZnO nanocomposites obtained by in situ polymerization
View/ Open
Date
2020Author
Type
Subject
Abstract
Nanostructured zinc oxide (ZnO) prepared by combustion in solution was used to obtain nanocomposites. The ZnO particles were characterized by Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), and scanning electron microscopy (SEM), showing crystallite size of 32 nm and a superficial area of 32.6 m2 g–1. Nanocomposites with 1, 3, and 5 wt.% of ZnO in the polymeric matrix were obtained using the in situ polymerization of ethylene with catalytic activities between 1500-1700 kg (molZr h PE)–1. ...
Nanostructured zinc oxide (ZnO) prepared by combustion in solution was used to obtain nanocomposites. The ZnO particles were characterized by Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), and scanning electron microscopy (SEM), showing crystallite size of 32 nm and a superficial area of 32.6 m2 g–1. Nanocomposites with 1, 3, and 5 wt.% of ZnO in the polymeric matrix were obtained using the in situ polymerization of ethylene with catalytic activities between 1500-1700 kg (molZr h PE)–1. The high-density polyethylene nanocomposites (PEZnO) were characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), SEM, and transmission electron microscopy (TEM). The nanocomposites with 1 wt.% ZnO gave excellent mechanical properties, and all were active against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. ...
In
Journal of the Brazilian Chemical Society. Campinas. Vol. 31, n. 8 (2020), p. 1566-1574
Source
National
Collections
-
Journal Articles (40977)Agricultural Sciences (4008)
This item is licensed under a Creative Commons License