3-D TCAD Monte Carlo device simulator : state-of-the-art FinFET simulation
View/ Open
Date
2021Author
Type
Subject
Abstract
This work presents a comprehensive description of an in-house 3D Monte Carlo device simulator for physical mod-eling of FinFETs. The simulator was developed to consider var-iability effects properly and to be able to study deeply scaled devices operating in the ballistic and quasi-ballistic regimes. The impact of random dopants and trapped charges in the die-lectric is considered by treating electron-electron and electron-ion interactions in real-space. Metal gate granularity is in-cluded throu ...
This work presents a comprehensive description of an in-house 3D Monte Carlo device simulator for physical mod-eling of FinFETs. The simulator was developed to consider var-iability effects properly and to be able to study deeply scaled devices operating in the ballistic and quasi-ballistic regimes. The impact of random dopants and trapped charges in the die-lectric is considered by treating electron-electron and electron-ion interactions in real-space. Metal gate granularity is in-cluded through the gate work functionvariation. The capability to evaluate these effects in nanometer3D devices makes the pre-sented simulator unique, thus advancing the state-of-the-art. The phonon scattering mechanisms, used to model the transport of electrons in puresilicon material system, were validated by comparing simulated drift velocities withavailable experi-mental data. The proper behavior of the device simulator is dis-played in a series of studies of the electric potentialin the device, the electron density, the carrier's energy and velocity, and the Id-Vg and Id-Vd curves. ...
In
Journal of integrated circuits and systems. Porto Alegre. Vol. 16, no. 2 (2021), p. 1-10
Source
National
Collections
-
Journal Articles (40281)Engineering (2437)
This item is licensed under a Creative Commons License