An interval fixed point theorem
dc.contributor.author | Oliveira, Paulo Werlang de | pt_BR |
dc.contributor.author | Claudio, Dalcidio Moraes | pt_BR |
dc.date.accessioned | 2023-03-22T03:24:51Z | pt_BR |
dc.date.issued | 1996 | pt_BR |
dc.identifier.issn | 0103-4308 | pt_BR |
dc.identifier.uri | http://hdl.handle.net/10183/256186 | pt_BR |
dc.description.abstract | In this paper we will present an interval version to the Fixed Point Theorem. Such theorem offers a practical method (the 'sucessive ap proximations method') which serves to the interval fixed point equa tion root compute. We will also present a criterion that allows to de fine easily ~theinterval semi-plain regions which can hold such roots. Finally, we will do a practical application, showing in what manner to compute the polynomial interval function fixed points. | en |
dc.format.mimetype | application/pdf | pt_BR |
dc.language.iso | eng | pt_BR |
dc.relation.ispartof | Revista de Informatica Teorica e Aplicada. Porto Alegre. vol. 3, n. 2 (1996), p. 117-131. | pt_BR |
dc.rights | Open Access | en |
dc.subject | Analise : Intervalos | pt_BR |
dc.subject | Interval Arithmetic | en |
dc.subject | Teorema : Ponto fixo | pt_BR |
dc.title | An interval fixed point theorem | pt_BR |
dc.type | Artigo de periódico | pt_BR |
dc.identifier.nrb | 000179532 | pt_BR |
dc.type.origin | Nacional | pt_BR |
Files in this item
This item is licensed under a Creative Commons License
-
Journal Articles (40305)Exact and Earth Sciences (6158)