Domínios intervalares da matemática computacional
View/ Open
Date
1991Author
Advisor
Academic level
Master
Type
Subject
Abstract in Portuguese (Brasil)
Fundamentada a importância da utilização da Teoria dos Intervalos em computação científica, é realizada uma revisão da Teoria Clássica dos Intervalos, com críticas sobre as incompatibilidades encontradas como motivos de diversas dificuldades para desenvolvimento da própria teoria e, consequentemente, das Técnicas Intervalares. É desenvolvida uma nova abordagem para a Teoria dos Intervalos de acordo com a Teoria dos Domínios e a proposta de [ACI 89], obtendo-se os Domínios Intervalares da Matemá ...
Fundamentada a importância da utilização da Teoria dos Intervalos em computação científica, é realizada uma revisão da Teoria Clássica dos Intervalos, com críticas sobre as incompatibilidades encontradas como motivos de diversas dificuldades para desenvolvimento da própria teoria e, consequentemente, das Técnicas Intervalares. É desenvolvida uma nova abordagem para a Teoria dos Intervalos de acordo com a Teoria dos Domínios e a proposta de [ACI 89], obtendo-se os Domínios Intervalares da Matemática Computacional. Introduz-se uma topologia (Topologia de Scott) compatível com a idéia de aproximação, gerando uma ordem de informação, isto é, para quaisquer intervalos x e y, diz-se que se x -c y , então y fornece mais (no mínimo tanto quanto) informação, sobre um real r, do que x. Prova-se que esta ordem de informação induz uma topologia To (topologia de Scott) , que é mais adequada para uma teoria computacional que a topologia da Hausdorff introduzida por Moore [MOO 66]. Cada número real r é aproximado por intervalos de extremos racionais, os intervalos de informação, que constituem o espaço de informação II(Q), superando assim a regressão infinita da abordagem clássica. Pode-se dizer que todo real r é o supremo de uma cadeia de intervalos com extremos racionais “encaixados”. Assim, os reais são os elementos totais de um domínio contínuo, chamado de Domínio dos Intervalos Reais Parciais, cuja base é o espaço de informação II (Q). Cada função contínua da Análise Real é o limite de sequências de funções contínuas entre elementos da base do domínio. Toda função contínua nestes domínios constitui uma função monotônica na base e é completamente representada em termos finitos. É introduzida uma quasi-métrica que induz uma topologia compatível com esta abordagem e provê as propriedades quantitativas, além de possibilitar a utilização da noção de sequências, limites etc, sem que se precise recorrer a conceitos mais complexos. Desenvolvem-se uma aritmética, critérios de aproximação e os conceito de intervalo ponto médio, intervalo valor absoluto e intervalo diâmetro, conceitos compatíveis com esta abordagem. São acrescentadas as operações de união, interseção e as unárias. Apresenta-se um amplo estudo sobre a função intervalar e a inclusão de imagens de funções, com ênfase na obtenção de uma extensão intervalar natural contínua. Esta é uma abordagem de lógica construtiva e computacional. ...
Abstract
The importance of Interval Theory for scientific computation is emphasized. A review of the Classical Theory is macle, including a discussion about some incompatibities that cause problems in developing interval algorithms. A new approach to the Interval Theory is developed in the light of the Theory of Domains and according to the ideas by Acióly [ACI 89], getting the Interval Domains of Computational Mathematics. It is introduced a topology (Scott Topology), which is associated with the idea ...
The importance of Interval Theory for scientific computation is emphasized. A review of the Classical Theory is macle, including a discussion about some incompatibities that cause problems in developing interval algorithms. A new approach to the Interval Theory is developed in the light of the Theory of Domains and according to the ideas by Acióly [ACI 89], getting the Interval Domains of Computational Mathematics. It is introduced a topology (Scott Topology), which is associated with the idea of approximation, generating an information order, that is, for any intervals x and y one says that if x -c y, then "the information given by y is better or at least equal than the one given by x". One proves that this information order induces a To topology (Scott's topology) which is more suitable for a computation theory than that of Hausdorff introduced by Moore [MOO 66]. This approach has the advantage of being both of constructive logic and computational. Each real number is approximated by intervals with rational bounds, named information intervals of the Information Space II(Q), eliminating the infinite regression found in the classical approach. One can say that every real a is the supreme of a chain of rational intervals. Then, the real numbers are the total elements of a continuous domain, named the Domain of the Partial Real Intervals, whose basis is the information space II (Q). Each continuous function in the Real Analysis is the limit of sequences of continuous functions among any elements which belong to the base of the domain. In these same domains, each continuous function is monotonic on the base and it is completely represented by finite terms. It is introduced a quasi-metric that leads to a compatible topology and supplies the quantitative properties. An arithmetic, some approximation criteria, the concepts of mean point interval, absolute value interval and width interval are developed and set operations are added. The ideas of interval functions and the inclusion of ranges of functions are also presented, and a continuous natural interval extension is obtained. ...
Institution
Universidade Federal do Rio Grande do Sul. Instituto de Informática. Curso de Pós-Graduação em Ciência da Computação.
Collections
-
Exact and Earth Sciences (5135)Computation (1765)
This item is licensed under a Creative Commons License