Mostrar el registro sencillo del ítem

dc.contributor.advisorBonorino, Leonardo Prangept_BR
dc.contributor.authorStoffel, Augusto Ritterpt_BR
dc.date.accessioned2010-07-10T04:18:57Zpt_BR
dc.date.issued2010pt_BR
dc.identifier.urihttp://hdl.handle.net/10183/24519pt_BR
dc.description.abstractNeste trabalho, estudamos a existˆencia e multiplicidade de solu¸c˜oes de certos problemas p-sublineares envolvendo o operador p-laplaciano usando teoria de Morse.pt_BR
dc.description.abstractThe purpose of this text is to provide a didactic exposition of the paper “Solutions of p-sublinear p-Laplacian equation via Morse theory” by Yuxia Guo and Jiaquan Liu [8]. This paper addresses the existence and multiplicity of solutions for the problem where is a smooth, bounded domain of RN, p is the p-Laplacian operator and f satisfies certain conditions, in particular f is p-sublinear at 0. Morse theory is used to infer the existence of critical points of a functional associated to this problem. In Chapter 2, we introduce the necessary Morse theoretic concepts, assuming basic knowledge of singular homology theory. In Chapter 3, we introduce basic properties of the p-Laplacian operator, assuming knowledge of Sobolev spaces, including imbedding and compactness results. Finally, in Chapter 4, we follow Guo and Liu’s paper itself.en
dc.format.mimetypeapplication/pdf
dc.language.isoporpt_BR
dc.rightsOpen Accessen
dc.subjectTeoria de Morsept_BR
dc.subjectPartial differential equationsen
dc.subjectEquações diferenciais parciaispt_BR
dc.subjectp-Laplacianen
dc.subjectMorse theoryen
dc.titleSoluções de equações p-sublineares envolvendo o operador p-Laplaciano via teoria de Morsept_BR
dc.typeDissertaçãopt_BR
dc.identifier.nrb000747596pt_BR
dc.degree.grantorUniversidade Federal do Rio Grande do Sulpt_BR
dc.degree.departmentInstituto de Matemáticapt_BR
dc.degree.programPrograma de Pós-Graduação em Matemáticapt_BR
dc.degree.localPorto Alegre, BR-RSpt_BR
dc.degree.date2010pt_BR
dc.degree.levelmestradopt_BR


Ficheros en el ítem

Thumbnail
   

Este ítem está licenciado en la Creative Commons License

Mostrar el registro sencillo del ítem