Electron holes in a κ distribution background with singularities
dc.contributor.author | Haas, Fernando | pt_BR |
dc.date.accessioned | 2022-06-25T05:03:15Z | pt_BR |
dc.date.issued | 2021 | pt_BR |
dc.identifier.issn | 1070-664X | pt_BR |
dc.identifier.uri | http://hdl.handle.net/10183/241034 | pt_BR |
dc.description.abstract | The pseudo-potential method is applied to derive diverse propagating electron–hole structures in a nonthermal or κ particle distribution function background. The associated distribution function Ansatz reproduces the Schamel distribution of [H. Schamel, Phys. Plasmas 22, 042301 (2015)] in the Maxwellian (j ! 1) limit, providing a significant generalization of it for plasmas where superthermal electrons are ubiquitous, such as space plasmas. The pseudo-potential and the nonlinear dispersion relation are evaluated. The role of the spectral index κ on the nonlinear dispersion relation is investigated, in what concerns the wave amplitude, for instance. The energy-like first integral from Poisson’s equation is applied to analyze the properties of diverse classes of solutions: with the absence of trapped electrons, with a non analytic distribution of trapped electrons, or with a surplus of trapped electrons. Special attention is, therefore, paid to the non-orthodox case where the electrons distribution function exhibits strong singularities, being discontinuous or non-analytic. | en |
dc.format.mimetype | application/pdf | pt_BR |
dc.language.iso | eng | pt_BR |
dc.relation.ispartof | Physics of plasmas. Melville. Vol. 28, no. 7 (July 2021), 072110, 8 p. | pt_BR |
dc.rights | Open Access | en |
dc.subject | Plasmas | pt_BR |
dc.subject | Ondas de plasma | pt_BR |
dc.subject | Equação de Poisson | pt_BR |
dc.subject | Dinâmica não-linear | pt_BR |
dc.title | Electron holes in a κ distribution background with singularities | pt_BR |
dc.type | Artigo de periódico | pt_BR |
dc.identifier.nrb | 001143048 | pt_BR |
dc.type.origin | Estrangeiro | pt_BR |
Este item está licenciado na Creative Commons License
-
Artigos de Periódicos (40281)Ciências Exatas e da Terra (6158)