Mostrar registro simples

dc.contributor.authorHaas, Fernandopt_BR
dc.date.accessioned2022-06-25T05:03:15Zpt_BR
dc.date.issued2021pt_BR
dc.identifier.issn1070-664Xpt_BR
dc.identifier.urihttp://hdl.handle.net/10183/241034pt_BR
dc.description.abstractThe pseudo-potential method is applied to derive diverse propagating electron–hole structures in a nonthermal or κ particle distribution function background. The associated distribution function Ansatz reproduces the Schamel distribution of [H. Schamel, Phys. Plasmas 22, 042301 (2015)] in the Maxwellian (j ! 1) limit, providing a significant generalization of it for plasmas where superthermal electrons are ubiquitous, such as space plasmas. The pseudo-potential and the nonlinear dispersion relation are evaluated. The role of the spectral index κ on the nonlinear dispersion relation is investigated, in what concerns the wave amplitude, for instance. The energy-like first integral from Poisson’s equation is applied to analyze the properties of diverse classes of solutions: with the absence of trapped electrons, with a non analytic distribution of trapped electrons, or with a surplus of trapped electrons. Special attention is, therefore, paid to the non-orthodox case where the electrons distribution function exhibits strong singularities, being discontinuous or non-analytic.en
dc.format.mimetypeapplication/pdfpt_BR
dc.language.isoengpt_BR
dc.relation.ispartofPhysics of plasmas. Melville. Vol. 28, no. 7 (July 2021), 072110, 8 p.pt_BR
dc.rightsOpen Accessen
dc.subjectPlasmaspt_BR
dc.subjectOndas de plasmapt_BR
dc.subjectEquação de Poissonpt_BR
dc.subjectDinâmica não-linearpt_BR
dc.titleElectron holes in a κ distribution background with singularitiespt_BR
dc.typeArtigo de periódicopt_BR
dc.identifier.nrb001143048pt_BR
dc.type.originEstrangeiropt_BR


Thumbnail
   

Este item está licenciado na Creative Commons License

Mostrar registro simples