Sobre anéis locais Cohen-Maucaulay com Dimensão de imersão e + d - 2 : uma conjectura de Sally
Visualizar/abrir
Data
2010Autor
Orientador
Nível acadêmico
Mestrado
Tipo
Resumo
Este trabalho desenvolve a demonstração, dada por Wang em 1977, para a conjectura de Sally, enunciada em 1983, que diz que dado um anel local noetheriano Cohen-Macaulay de dimensão d e dimensão de imersão e + d - 2, onde e é a sua multiplicidade, seu anel graduado associado possui profundidade maior ou igual a d - 1. Utilizando uma propriedade demonstrada por Sally em 1979 (Sally Machine), reduzimos o problema ao caso em que a dimensão do anel é 2, e assim, demonstramos que a profundidade do an ...
Este trabalho desenvolve a demonstração, dada por Wang em 1977, para a conjectura de Sally, enunciada em 1983, que diz que dado um anel local noetheriano Cohen-Macaulay de dimensão d e dimensão de imersão e + d - 2, onde e é a sua multiplicidade, seu anel graduado associado possui profundidade maior ou igual a d - 1. Utilizando uma propriedade demonstrada por Sally em 1979 (Sally Machine), reduzimos o problema ao caso em que a dimensão do anel é 2, e assim, demonstramos que a profundidade do anel graduado associado é positiva. ...
Abstract
Instituição
Universidade Federal do Rio Grande do Sul. Instituto de Matemática. Programa de Pós-Graduação em Matemática.
Coleções
-
Ciências Exatas e da Terra (5141)Matemática (366)
Este item está licenciado na Creative Commons License