Mostrar registro simples

dc.contributor.advisorThomas, Gilberto Limapt_BR
dc.contributor.authorFortuna, Ismaelpt_BR
dc.date.accessioned2010-06-01T04:18:25Zpt_BR
dc.date.issued2010pt_BR
dc.identifier.urihttp://hdl.handle.net/10183/23236pt_BR
dc.description.abstractO estudo dos sistemas que apresentam padrões celulares é motivado pela frequência com que são encontrados na natureza, bem como sua grande aplicabilidade tecnológica. Sistemas celulares biológicos, sólidos policristalinos, espumas, entre outros, têm em comum uma estrutura formada por domínios, e diferentes regimes estruturais e de dinâmica para diferentes frações entre as fases envolvidas. A maioria dos trabalhos publicados até hoje se limitou aos casos limites de diluição entre as fases do sistema, ou seja, ao limite em que a fase celular está muito diluída, caracterizando o Amadurecimento de Ostwald (ou do inglês, Ostwald Ripening), e o limite oposto, quando os domínios estão em contato direto entre si, e que o seu crescimento é descrito pela lei de von Neumann-Mullins. Este trabalho compila os conhecimentos sobre a estrutura e a dinâmica desta classe de sistemas, e explora os efeitos decorrentes das frações entre as fases. Também apresenta os resultados obtidos pelas simulações realizadas utilizando o modelo GGH, para diversas frações entre fases e que reproduzem os resultados conhecidos para os casos limites, bem como mostram que o crescimento em escala não é algo específico destes limites. E, por final, apresenta uma tentativa de escrever uma expressão matemática para a taxa de crescimento dos domínios que conecte as teorias limites, como sendo apenas função de variáveis relacionadas à sua geometria.pt_BR
dc.description.abstractThe study of systems that exhibit cellular patterns is motivated not only by the frequency with which they are found in nature, but also by their wide application in technology. Biological systems, policrystal solids, soap froth, and others, have in common a structure formed by domains, and different structural and dynamic regimes for different fractions between the phases in the system. Most studies have been limited to the limit cases where the dilution between the phases of the system, i.e., the threshold at which cell phase is very dilute, featuring Ostwald Ripening, and the opposite limit, when the domains are in direct contact with each other, and where its growth is described by the law of von Neumann-Mullins. This work compiles the knowledge of the structure and dynamics of this class of systems, and explores the effects of the different fractions between the phases. It also presents the results obtained by simulations using the GGH model for these various fractions between regimes and reproducing the known results for the limiting cases and showing that the scale growth is not specific to these limits. Yet, it presents, an attempt to write a mathematical expression for the rate of growth of the areas that connect the limit theories through a function of the variables related to the system geometry.en
dc.format.mimetypeapplication/pdfpt_BR
dc.language.isoporpt_BR
dc.rightsOpen Accessen
dc.subjectEstruturas celulares bidimensionaispt_BR
dc.subjectBiofisica celularpt_BR
dc.subjectEspumaspt_BR
dc.subjectBolhaspt_BR
dc.titleDinâmica do crescimento de espumas molhadaspt_BR
dc.typeDissertaçãopt_BR
dc.identifier.nrb000740441pt_BR
dc.degree.grantorUniversidade Federal do Rio Grande do Sulpt_BR
dc.degree.departmentInstituto de Físicapt_BR
dc.degree.programPrograma de Pós-Graduação em Físicapt_BR
dc.degree.localPorto Alegre, BR-RSpt_BR
dc.degree.date2010pt_BR
dc.degree.levelmestradopt_BR


Thumbnail
   

Este item está licenciado na Creative Commons License

Mostrar registro simples