Chiral bistacrine analogues : synthesis, cholinesterase inhibitory activity and a molecular modeling approach
dc.contributor.author | Lopes, João Paulo Bizarro | pt_BR |
dc.contributor.author | Costa, Jessie Sobieski da | pt_BR |
dc.contributor.author | Ceschi, Marco Antonio | pt_BR |
dc.contributor.author | Goncalves, Carlos Alberto Saraiva | pt_BR |
dc.contributor.author | Konrath, Eduardo Luis | pt_BR |
dc.contributor.author | Karl, Ana Luiza Martins | pt_BR |
dc.contributor.author | Guedes, Isabella Alvim | pt_BR |
dc.contributor.author | Dardenne, Laurent Emmanuel | pt_BR |
dc.date.accessioned | 2021-09-24T04:23:08Z | pt_BR |
dc.date.issued | 2017 | pt_BR |
dc.identifier.issn | 0103-5053 | pt_BR |
dc.identifier.uri | http://hdl.handle.net/10183/230226 | pt_BR |
dc.description.abstract | Cholinesterase enzymes are important targets for the therapy of Alzheimer’s disease. Tacrine-based dual binding site cholinesterases inhibitors are potential disease-modifying anti-Alzheimer drug candidates. In the present work, we described the synthesis of a series of chiral homo- and heterodimers of bis(7)-tacrine connected by a heptylene chain as a spacer with the methyl substituent at the C-3 position of the alicyclic region of tacrine nucleus and/or a chlorine atom attached to the C-6. Friedländer cyclocondensation between (R) or (S) 3-methylcyclohexanone prepared from monoterpene pulegone and o-aminobenzoic acids in the presence of POCl3 afford 9-chloroacridines as intermediates, which were used to the synthesis of homo- and heterodimers. All compounds demonstrated to be potent inhibitors of acetylcholinesterase (AChE) at low nanomolar concentration and showed selectivity for AChE over butyrylcholinesterase (BuChE). Furthermore, the affinity difference between enantiomeric bis(7)-tacrine analogues series indicated some degree of stereoselectivity in the active site of AChE for chiral bis-cognitin compounds. | en |
dc.format.mimetype | application/pdf | pt_BR |
dc.language.iso | eng | pt_BR |
dc.relation.ispartof | Journal of the Brazilian Chemical Society. Vol. 28, n. 11 (2017), p. 2218-2228 | pt_BR |
dc.rights | Open Access | en |
dc.subject | Colinesterases | pt_BR |
dc.subject | Bistacrine | en |
dc.subject | Doença de Alzheimer | pt_BR |
dc.subject | Chiral | en |
dc.subject | Cholinesterases | en |
dc.subject | Synthesis | en |
dc.subject | Molecular docking | en |
dc.title | Chiral bistacrine analogues : synthesis, cholinesterase inhibitory activity and a molecular modeling approach | pt_BR |
dc.type | Artigo de periódico | pt_BR |
dc.identifier.nrb | 001051310 | pt_BR |
dc.type.origin | Nacional | pt_BR |
Files in this item
This item is licensed under a Creative Commons License
-
Journal Articles (40281)Biological Sciences (3173)
-
Journal Articles (40281)Health Sciences (10760)