Genome mining for antimicrobial compounds in wild marine animals-associated Enterococci
dc.contributor.author | Prichula, Janira | pt_BR |
dc.contributor.author | Barros, Muriel Primon de | pt_BR |
dc.contributor.author | Luz, Romeu C. Z. | pt_BR |
dc.contributor.author | Castro, Ícaro Maia Santos de | pt_BR |
dc.contributor.author | Paim, Thiago Galvão da Silva | pt_BR |
dc.contributor.author | Tavares, Maurício | pt_BR |
dc.contributor.author | D'Azevedo, Pedro Alves | pt_BR |
dc.contributor.author | Frazzon, Jeverson | pt_BR |
dc.contributor.author | Frazzon, Ana Paula Guedes | pt_BR |
dc.contributor.author | Seixas, Adriana | pt_BR |
dc.contributor.author | Gilmore, Michael S. | pt_BR |
dc.date.accessioned | 2021-09-03T04:27:58Z | pt_BR |
dc.date.issued | 2021 | pt_BR |
dc.identifier.issn | 1660-3397 | pt_BR |
dc.identifier.uri | http://hdl.handle.net/10183/229534 | pt_BR |
dc.description.abstract | New ecosystems are being actively mined for new bioactive compounds. Because of the large amount of unexplored biodiversity, bacteria from marine environments are especially promising. Further, host-associated microbes are of special interest because of their low toxicity and compatibility with host health. Here, we identified and characterized biosynthetic gene clusters encoding antimicrobial compounds in host-associated enterococci recovered from fecal samples of wild marine animals remote from human-affected ecosystems. Putative biosynthetic gene clusters in the genomes of 22 Enterococcus strains of marine origin were predicted using antiSMASH5 and Bagel4 bioinformatic software. At least one gene cluster encoding a putative bioactive compound precursor was identified in each genome. Collectively, 73 putative antimicrobial compounds were identified, including 61 bacteriocins (83.56%), 10 terpenes (13.70%), and 2 (2.74%) related to putative nonribosomal peptides (NRPs). Two of the species studied, Enterococcus avium and Enterococcus mundtti, are rare causes of human disease and were found to lack any known pathogenic determinants but yet possessed bacteriocin biosynthetic genes, suggesting possible additional utility as probiotics. Wild marine animal-associated enterococci from human-remote ecosystems provide a potentially rich source for new antimicrobial compounds of therapeutic and industrial value and potential probiotic application. | en |
dc.format.mimetype | application/pdf | pt_BR |
dc.language.iso | eng | pt_BR |
dc.relation.ispartof | Marine drugs. Basel. Vol. 19, no. 6 (June 2021), 328, 21 p. | pt_BR |
dc.rights | Open Access | en |
dc.subject | Fauna marinha | pt_BR |
dc.subject | Enterococci | en |
dc.subject | Genome-wide analysis | en |
dc.subject | Enterococcus | pt_BR |
dc.subject | Bacteriocins | en |
dc.subject | Anti-infecciosos | pt_BR |
dc.subject | Bacteriocinas | pt_BR |
dc.subject | Probiotics | en |
dc.subject | Wild marine species | en |
dc.subject | Família multigênica | pt_BR |
dc.subject | Genoma microbiano | pt_BR |
dc.title | Genome mining for antimicrobial compounds in wild marine animals-associated Enterococci | pt_BR |
dc.type | Artigo de periódico | pt_BR |
dc.identifier.nrb | 001130852 | pt_BR |
dc.type.origin | Estrangeiro | pt_BR |
Files in this item
This item is licensed under a Creative Commons License
-
Journal Articles (40917)Agricultural Sciences (4006)
-
Journal Articles (40917)Biological Sciences (3218)