Mostrar registro simples

dc.contributor.authorBenvenutti, Radharanipt_BR
dc.contributor.authorMarcon, Matheus Felipept_BR
dc.contributor.authorReis, Carlos Guilherme Rosapt_BR
dc.contributor.authorNery, Laura Roeslerpt_BR
dc.contributor.authorMiguel, Camilapt_BR
dc.contributor.authorHerrmann, Ana Paulapt_BR
dc.contributor.authorVianna, Monica Ryff Moreira Rocapt_BR
dc.contributor.authorPiato, Angelo Luis Stapassolipt_BR
dc.date.accessioned2021-07-21T04:23:16Zpt_BR
dc.date.issued2018pt_BR
dc.identifier.issn2167-8359pt_BR
dc.identifier.urihttp://hdl.handle.net/10183/224211pt_BR
dc.description.abstractBackground: Parkinson’s disease (PD) is the second most common neurodegenerative disorder. In addition to its highly debilitating motor symptoms, non-motor symptoms may precede their motor counterparts by many years, which may characterize a prodromal phase of PD. A potential pharmacological strategy is to introduce neuroprotective agents at an earlier stage in order to prevent further neuronal death. N-acetylcysteine (NAC) has been used against paracetamol overdose hepatotoxicity by restoring hepatic concentrations of glutathione (GSH), and as a mucolytic in chronic obstructive pulmonary disease by reducing disulfide bonds in mucoproteins. It has been shown to be safe for humans at high doses. More recently, several studies have evidenced that NAC has a multifaceted mechanism of action, presenting indirect antioxidant effect by acting as a GSH precursor, besides its anti-inflammatory and neurotrophic effects. Moreover, NAC modulates glutamate release through activation of the cystine-glutamate antiporter in extrasynaptic astrocytes. Its therapeutic benefits have been demonstrated in clinical trials for several neuropsychiatric conditions but has not been tested in PD models yet. Methods: In this study, we evaluated the potential of NAC to prevent the damage induced by 6-hydroxydopamine (6-OHDA) on motor, optomotor and morphological parameters in a PD model in larval zebrafish. Results: NAC was able to prevent the motor deficits (total distance, mean speed, maximum acceleration, absolute turn angle and immobility time), optomotor response impairment and morphological alterations (total length and head length) caused by exposure to 6-OHDA, which reinforce and broaden the relevance of its neuroprotective effects. Discussion: NAC acts in different targets relevant to PD pathophysiology. Further studies and clinical trials are needed to assess this agent as a candidate for prevention and adjunctive treatment of PD.en
dc.format.mimetypeapplication/pdfpt_BR
dc.language.isoengpt_BR
dc.relation.ispartofPeerJ. Corte Madera. Vol. 6 (2018), e4957, 17 p.pt_BR
dc.rightsOpen Accessen
dc.subjectN-acetylcysteineen
dc.subjectDoença de Parkinsonpt_BR
dc.subjectParkinson’s diseaseen
dc.subjectPeixe-zebrapt_BR
dc.subjectZebrafishen
dc.subjectOxidopaminapt_BR
dc.subjectAcetilcisteínapt_BR
dc.subject6-Hydroxydopamineen
dc.subjectNeuroproteçãopt_BR
dc.titleN-acetylcysteine protects against motor, optomotor and morphological deficits induced by 6-OHDA in zebrafish larvaept_BR
dc.typeArtigo de periódicopt_BR
dc.identifier.nrb001077044pt_BR
dc.type.originEstrangeiropt_BR


Thumbnail
   

Este item está licenciado na Creative Commons License

Mostrar registro simples