Abordagens multivariadas para seleção de variáveis com vistas à classificação e predição de propriedades de amostras
Visualizar/abrir
Data
2021Orientador
Nível acadêmico
Doutorado
Tipo
Assunto
Resumo
A seleção de variáveis é uma etapa importante para a análise de dados, visto que identifica os subconjuntos de variáveis mais informativas para a construção de modelos precisos de classificação e predição. Além disso, a seleção de variáveis facilita a interpretação e análise dos modelos obtidos, potencialmente reduzindo o tempo computacional de geração dos modelos e o custo/tempo para obtenção das amostras. Neste contexto, a presente tese apresenta proposições inovadoras de abordagens com vista ...
A seleção de variáveis é uma etapa importante para a análise de dados, visto que identifica os subconjuntos de variáveis mais informativas para a construção de modelos precisos de classificação e predição. Além disso, a seleção de variáveis facilita a interpretação e análise dos modelos obtidos, potencialmente reduzindo o tempo computacional de geração dos modelos e o custo/tempo para obtenção das amostras. Neste contexto, a presente tese apresenta proposições inovadoras de abordagens com vistas à seleção de variáveis para classificação e predição de propriedades de amostras de produtos diversos. Tais abordagens são abordadas em três artigos apresentados nesta tese, com intuito de melhorar a precisão dos modelos de classificação e predição em diferentes áreas. No primeiro artigo, integram-se índices de importância de variáveis a sistemáticas de classificação hierárquica para categorizar amostras de espumantes de acordo com seu país de origem. No segundo artigo, para selecionar as variáveis mais informativas para a predição de amostras via PLS, propõe-se um índice de importância de variáveis baseado na Lei de Lambert-Beer combinado a um processo iterativo de seleção do tipo forward. Por fim, o terceiro artigo utilizou cluster de variáveis espectrais e índice de importância para selecionar as variáveis que produzem modelos de predição mais consistentes. Em todos os artigos dessa tese, os resultados obtidos pelos métodos propostos foram superiores quando comparados a outros métodos tradicionais da literatura voltados à identificação das variáveis mais informativas. ...
Abstract
Variable selection is an important step in data analysis, since it identifies the most informative subsets of variables for build accurate classification and prediction models. In addition, variable selection improves the interpretation and analysis of obtained models, reduces the computational time to build models and reduces the obtained samples costs. In this context, this thesis presents propositions for a variable selection method aiming to classifying and predicting sample properties. Suc ...
Variable selection is an important step in data analysis, since it identifies the most informative subsets of variables for build accurate classification and prediction models. In addition, variable selection improves the interpretation and analysis of obtained models, reduces the computational time to build models and reduces the obtained samples costs. In this context, this thesis presents propositions for a variable selection method aiming to classifying and predicting sample properties. Such methods are presented in three papers in this thesis, in order to improve the classification and prediction accuracy in different areas. In first paper, we applied variable importance index coupled with a hierarchical classification technique to identify the country of origin of sparkling wines. In second paper, to select the most informative variables for prediction, a variable improtance index was built based on Lambert-Beer law and an iterative forward process was performed. Finally, in third paper was used clustering of variables and variable importance index to select the variables that produce more consistent prediction models. In all papers of this thesis, when conpared to other traditional methods, our proposition obtained better results. ...
Instituição
Universidade Federal do Rio Grande do Sul. Escola de Engenharia. Programa de Pós-Graduação em Engenharia de Produção e Transportes.
Coleções
-
Engenharias (7412)Engenharia de Produção (1233)
Este item está licenciado na Creative Commons License