Show simple item record

dc.contributor.advisorEngel, Paulo Martinspt_BR
dc.contributor.authorTodt, Vivianept_BR
dc.date.accessioned2007-06-06T17:19:57Zpt_BR
dc.date.issued1998pt_BR
dc.identifier.urihttp://hdl.handle.net/10183/2062pt_BR
dc.description.abstractAtualmente, pesquisadores das mais diversas áreas, tais como: Geologia, Física, Cartografia, Oceanografia, entre outras, utilizam imagens de satélite como uma fonte valiosa para a extração de informações sobre a superfície terrestre. Muitas vezes, a análise (classificação) destas imagens é realizada por métodos tradicionais sejam eles supervisionados (como o Método de Máxima Verossimilhança Gaussiana) ou nãosupervisionados (como o Método de Seleção pelo Pico do Histograma). Entretanto, pode-se utilizar as Redes Neurais Artificiais como uma alternativa para o aumento da acurácia em classificações digitais. Neste trabalho, utilizou-se imagens multi-espectrais do satélite LANDSAT 5-TM para a identificação de espécies vegetais (Mata Nativa, Eucalyptus e Acácia) em uma região próxima aos municípios de General Câmara, Santo Amaro e Taquari, no Estado do Rio Grande do Sul, Brasil. Comparou-se qualitativamente e quantitativamente os resultados obtidos pelo método de Máxima Verossimilhança Gaussiana e por uma Rede Neural Artificial Multinível com BackPropagation na classificação da área de estudo. Para tanto, parte desta área foi mapeada através de uma verificação de campo e com o auxílio de classificadores nãosupervisionados (Kohonen, que é uma Rede Neural, e o método de Seleção pelo Pico do Histograma). Com isto, foi possível coletar dois conjuntos de amostras, sendo que um deles foi utilizado para o treinamento dos métodos e o outro (conjunto de reconhecimento) serviu para a avaliação das classificações obtidas. Após o treinamento, parte da área de estudo foi classificada por ambos os métodos. Em seguida, os resultados obtidos foram avaliados através do uso de Tabelas de Contingência, considerando um nível de significância de 5%. Por fim, na maior parte dos testes realizados, a Rede Neural Artificial Multinível com BackPropagation apresentou valores de acurácia superiores ao Método de Máxima Verossimilhança Gaussiana. Assim, com este trabalho observou-se que não há diferença significativa de classificação para as espécies vegetais, ao nível de 5%, para a área de estudo considerada, na época de aquisição da imagem, para o conjunto de reconhecimento.pt_BR
dc.format.mimetypeapplication/pdf
dc.language.isoporpt_BR
dc.rightsOpen Accessen
dc.subjectSensoriamento remotopt_BR
dc.subjectRedes neuraispt_BR
dc.subjectClassificacao : Imagempt_BR
dc.subjectEngenharia florestalpt_BR
dc.subjectGeoinformáticapt_BR
dc.titleAvaliação do desempenho de classificadores neurais para aplicações em sensoriamento remotopt_BR
dc.typeDissertaçãopt_BR
dc.contributor.advisor-coMadruga, Pedro Roberto de Azambujapt_BR
dc.identifier.nrb000225307pt_BR
dc.degree.grantorUniversidade Federal do Rio Grande do Sulpt_BR
dc.degree.departmentCentro Estadual de Pesquisas em Sensoriamento Remoto e Meteorologiapt_BR
dc.degree.programCurso de Pós-Graduação em Sensoriamento Remotopt_BR
dc.degree.localPorto Alegre, BR-RSpt_BR
dc.degree.date1998pt_BR
dc.degree.levelmestradopt_BR


Files in this item

Thumbnail
   

This item is licensed under a Creative Commons License

Show simple item record