Mostrar registro simples

dc.contributor.authorSilva, Roberto dapt_BR
dc.contributor.authorStock, Eduardo Velascopt_BR
dc.date.accessioned2019-08-28T02:34:13Zpt_BR
dc.date.issued2019pt_BR
dc.identifier.issn1539-3755pt_BR
dc.identifier.urihttp://hdl.handle.net/10183/198445pt_BR
dc.description.abstractIn this paper we propose a generalized model for the motion of a two-species self-driven objects ranging from a scenario of a completely random environment of particles of negligible excluded volume to a more deterministic regime of rigid objects in an environment. Each cell of the system has a maximum occupation level called σ max . Both species move in opposite directions. The probability of any given particle to move to a neighboring cell depends on the occupation of this cell according to a Fermi-Dirac-like distribution, considering a parameter α that controls the system randomness. We show that for a certain α = α c the system abruptly transits from a mobile scenario to a clogged state, which is characterized by condensates. We numerically describe the details of this transition by coupled partial differential equations (PDE) and Monte Carlo (MC) simulations that are in good agreement.en
dc.format.mimetypeapplication/pdfpt_BR
dc.language.isoengpt_BR
dc.relation.ispartofPhysical review. E, Statistical, nonlinear, and soft matter physics. Melville. Vol. 99, no. 4 (Apr.2018), 042148, 6 p.pt_BR
dc.rightsOpen Accessen
dc.subjectMétodo de Monte Carlopt_BR
dc.subjectProcesso estocásticopt_BR
dc.subjectTransformações de fasept_BR
dc.subjectEquações diferenciais parciaispt_BR
dc.titleMobile-to-clogging transition in a Fermi-like model of counterflowing particlespt_BR
dc.typeArtigo de periódicopt_BR
dc.identifier.nrb001097259pt_BR
dc.type.originEstrangeiropt_BR


Thumbnail
   

Este item está licenciado na Creative Commons License

Mostrar registro simples