Automatic calibration of a large-scale sediment model using suspended sediment concentration, water quality, and remote sensing data
View/ Open
Date
2019Type
Title alternative
Calibração automática de um modelo hidrossedimentológico de grande escala usando dados de concentração de sedimentos em suspensão, qualidade da água e sensoriamento remoto
Subject
Abstract
Calibration and validation are two important steps in the application of sediment models requiring observed data. This study aims to investigate the potential use of suspended sediment concentration (SSC), water quality and remote sensing data to calibrate and validate a large-scale sediment model. Observed data from across 108 stations located in the Doce River basin was used for the period between 1997-2010. Ten calibration and validation experiments using the MOCOM-UA optimization algorithm ...
Calibration and validation are two important steps in the application of sediment models requiring observed data. This study aims to investigate the potential use of suspended sediment concentration (SSC), water quality and remote sensing data to calibrate and validate a large-scale sediment model. Observed data from across 108 stations located in the Doce River basin was used for the period between 1997-2010. Ten calibration and validation experiments using the MOCOM-UA optimization algorithm coupled with the MGB-SED model were carried out, which, over the same period of time, resulted in 37 calibration and 111 validation tests. The experiments were performed by modifying metrics, spatial discretization, observed data and parameters of the MOCOM-UA algorithm. Results generally demonstrated that the values of correlation presented slight variations and were superior in the calibration step. Additionally, increasing spatial discretization or establishing a background concentration for the model allowed for improved results. In a station with high quantity of SSC data, calibration improved the ENS coefficient from -0.44 to 0.44. The experiments showed that the spectral surface reflectance, total suspended solids and turbidity data have the potential to enhance the performance of sediment models. ...
Abstract in Portuguese (Brasil)
A calibração e a validação são duas etapas importantes na aplicação de modelos de sedimentos que requerem dados observados. Nesse contexto, este estudo investigou o potencial de uso dos dados de concentração de sedimentos em suspensão (CSS), qualidade da água e sensoriamento remoto na calibração e validação de um modelo hidrossedimentológico de grande escala. Foram usados dados observados de 108 estações, localizadas na bacia do rio Doce, para o período entre 1997 e 2010. Foram realizados dez e ...
A calibração e a validação são duas etapas importantes na aplicação de modelos de sedimentos que requerem dados observados. Nesse contexto, este estudo investigou o potencial de uso dos dados de concentração de sedimentos em suspensão (CSS), qualidade da água e sensoriamento remoto na calibração e validação de um modelo hidrossedimentológico de grande escala. Foram usados dados observados de 108 estações, localizadas na bacia do rio Doce, para o período entre 1997 e 2010. Foram realizados dez experimentos de calibração e validação usando o algoritmo de otimização MOCOM-UA, acoplado ao modelo MGB-SED, resultando em 37 calibrações automáticas e 111 testes de validação, todos no mesmo período. Os experimentos foram construídos modificando as métricas, discretização espacial, dados de CSS e parâmetros do algoritmo MOCOM-UA. Os resultados mostraram que, no geral, os valores das correlações variaram pouco e foram melhores na etapa de calibração. Observou-se que, o aumento da discretização espacial da bacia ou o estabelecimento de uma concentração mínima para o modelo, possibilitou obter resultados melhores. Em uma estação com muitos dados de CSS, a calibração melhorou o coeficiente de ENS de -0,44 para 0,44. Os experimentos mostraram que os dados de reflectância espectral de superfície, sólidos suspensos totais e turbidez apresentam potencial para melhorar a performance dos modelos de sedimentos. ...
In
Rbrh : Revista Brasileira de Recursos Hídricos. Porto Alegre, RS. Vol. 24 (Jan./Dec. 2019), e26, 18 f.
Source
National
Collections
-
Journal Articles (40977)Engineering (2456)
This item is licensed under a Creative Commons License