Mostrar el registro sencillo del ítem

dc.contributor.authorStringer, Katelyn M.pt_BR
dc.contributor.authorSantiago, Basilio Xavierpt_BR
dc.contributor.authorDES Collaborationpt_BR
dc.date.accessioned2019-07-19T02:38:48Zpt_BR
dc.date.issued2019pt_BR
dc.identifier.issn0004-6256pt_BR
dc.identifier.urihttp://hdl.handle.net/10183/197165pt_BR
dc.description.abstractMany studies have shown that RR Lyrae variable stars (RRL) are powerful stellar tracers of Galactic halo structure and satellite galaxies. The Dark Energy Survey (DES), with its deep and wide coverage (g ~ 23.5 mag in a single exposure; over 5000 deg2) provides a rich opportunity to search for substructures out to the edge of the Milky Way halo. However, the sparse and unevenly sampled multiband light curves from the DES wide-field survey (a median of four observations in each of grizY over the first three years) pose a challenge for traditional techniques used to detect RRL. We present an empirically motivated and computationally efficient template-fitting method to identify these variable stars using three years of DES data. When tested on DES light curves of previously classified objects in SDSS stripe 82, our algorithm recovers 89% of RRL periods to within 1% of their true value with 85% purity and 76% completeness. Using this method, we identify 5783 RRL candidates, ~28% of which are previously undiscovered. This method will be useful for identifying RRL in other sparse multiband data setsen
dc.format.mimetypeapplication/pdfpt_BR
dc.language.isoengpt_BR
dc.relation.ispartofThe astronomical journal. Bristol. Vol. 158, no. 1 (July 2019), 16, 26 p.pt_BR
dc.rightsOpen Accessen
dc.subjectcatalogs–galaxyen
dc.subjectCatalogos astronomicospt_BR
dc.subjecthalo–galaxyen
dc.subjectAglomerados estelares e associacoespt_BR
dc.subjectEstrelas variaveispt_BR
dc.subjectstructure–methodsen
dc.subjectstatistical–starsen
dc.subjectEnergia escurapt_BR
dc.subjectvariables: RR Lyraeen
dc.titleIdentification of RR lyrae stars in multiband, sparsely sampled data from the dark energy survey using template fitting and random forest classificationpt_BR
dc.typeArtigo de periódicopt_BR
dc.identifier.nrb001097294pt_BR
dc.type.originEstrangeiropt_BR


Ficheros en el ítem

Thumbnail
   

Este ítem está licenciado en la Creative Commons License

Mostrar el registro sencillo del ítem