Show simple item record

dc.contributor.advisorMazzaferro, Jose Antonio Esmeriopt_BR
dc.contributor.authorEspitia Pérez, Juan Davidpt_BR
dc.date.accessioned2019-05-18T02:36:43Zpt_BR
dc.date.issued2019pt_BR
dc.identifier.urihttp://hdl.handle.net/10183/194345pt_BR
dc.description.abstractNo presente trabalho, é proposta uma fonte de calor volumétrica móvel Duplo Elipsoide para simular o processo de soldagem TIG e uma fonte de calor Duplo Bi-Elipsoide para simular o processo de soldagem MAG, baseadas na distribuição de calor duplo elipsoide de Goldak. As geometrias dos cordões de solda resultantes dos procedimentos experimentais, foram estudadas mediante projetos de experimentos Box-Behnken para determinar a influência dos parâmetros de soldagem e suas interações sobre as dimensões da seção transversal dos cordões de solda e da poça de fusão. Com auxílio da análise da variância foram obtidas equações de regressão polinomial em função da corrente, distância eletrodo-peça e velocidade de soldagem no caso dos cordões de solda TIG, e em função da tensão de soldagem, velocidade de alimentação do arame e velocidade de soldagem para os cordões de solda MAG, as quais conseguiram descrever analiticamente cada parâmetro dimensional com relativa exatidão. A comparação entre as dimensões dos cordões de solda estimadas pelos modelos analíticos e os dados experimentais, apresentaram erros máximos de 24,08% no caso dos cordões de solda TIG. As porcentagens de erros máximas calculadas para os cordões de solda MAG com arame de 1,0 mm e 1,2 mm foram 24,15% e 14,51% respetivamente. A grande vantagem da implementação dos modelos de regressão polinomial na modelagem computacional é a obtenção das dimensões características que governam os modelos de fonte de calor a partir dos parâmetros de soldagem, prescindindo de complexos procedimentos experimentais. As equações de regressão polinomial adquiridas mediante a análise estatística foram utilizadas para resolver as equações do modelo de fonte de calor Duplo Elipsoide e Duplo Bi-Elipsoide em simulações computacionais de elementos finitos (FEM) utilizando o software COMSOL® Multiphysics. A comparação entre geometrias estimadas pelas simulações FEM e os dados experimentais permitiu calcular uma porcentagem de erro máximo de 21,38% no caso dos cordões de solda TIG. No caso das soldas MAG com arame de 1,0 mm e 1,2 mm foram calculados erros máximos de 21,73% e 27,61% respetivamente. A diferença entre as temperaturas máximas obtidas mediante as simulações FEM e medidas experimentalmente foi inferior a 10 °C para os cordões de solda TIG, e menor a 22 °C para os cordões de solda MAG.pt
dc.description.abstractIn the present work, a double ellipsoid mobile volumetric heat source is proposed to simulate the TIG welding process and a double Bi-ellipsoid heat source to simulate the MAG welding process, based on the Dual-heat distribution of Goldak's Ellipsoid. The geometries of weld beads resulting from the experimental procedures were studied using Box-Behnken designs to determine the influence of the welding parameters and their interactions on the dimensions of the cross-section of weld bead and melting pool. With the aid of analysis of variance, polynomial regression equations were obtained as a function of current, electrode-part distance and welding speed in the case of TIG weldments, and as a function of welding voltage, wire feeding speed and welding speed for MAG weldments, which were able to describe each dimensional parameter analytically with relative accuracy. The comparison between the dimensions of the weld beads estimated by the analytical models and the experimental data, presented maximum errors of 24,08% in the TIG weld beads. The maximum error percentages calculated for the MAG weld beads with 1,0 mm and 1,2 mm welding wire were 24,15% and 14,51% respectively. The main advantage of implementing the polynomial regression models in computational modeling is the obtaining of the characteristic dimensions that govern the models of the heat source from the welding parameters, without complex experimental procedures. The polynomial regression equations acquired through statistical analysis were used to solve the equations of the Double-Ellipsoid and Double Bi-Ellipsoid heat source model in finite element computational simulations (FEM) using the COMSOL® Multiphysics software. The comparison between geometries estimated by the FEM simulations and the experimental data allowed to calculate a maximum error percentage of 21,38% in the TIG weld beads. In the case of MAG welds beads with 1,0 mm and 1,2 mm welding wire, maximum errors of 21,73% and 27,61% were calculated respectively. The difference between the maximum temperatures obtained by the FEM simulations and measured experimentally was less than 10°C for the TIG weld beads, and less than 22 °C for the MAG weld beads.en
dc.format.mimetypeapplication/pdfpt_BR
dc.language.isoporpt_BR
dc.rightsOpen Accessen
dc.subjectWelding bead geometryen
dc.subjectSoldagem MIG/MAGpt_BR
dc.subjectMAGen
dc.subjectSoldagem TIGpt_BR
dc.subjectModelagem matemáticapt_BR
dc.subjectTIGen
dc.subjectDouble elipsoidal heat sourceen
dc.subjectBox-Behnkenen
dc.titleDesenvolvimento de modelo de fonte de calor para os processos de soldagem TIG e MAGpt_BR
dc.typeDissertaçãopt_BR
dc.identifier.nrb001093367pt_BR
dc.degree.grantorUniversidade Federal do Rio Grande do Sulpt_BR
dc.degree.departmentEscola de Engenhariapt_BR
dc.degree.programPrograma de Pós-Graduação em Engenharia Mecânicapt_BR
dc.degree.localPorto Alegre, BR-RSpt_BR
dc.degree.date2019pt_BR
dc.degree.levelmestradopt_BR


Files in this item

Thumbnail
   

This item is licensed under a Creative Commons License

Show simple item record