Mostrar el registro sencillo del ítem

dc.contributor.authorAllem, Luiz Emíliopt_BR
dc.contributor.authorCafure, Antonio Artemiopt_BR
dc.contributor.authorDratman, Ezequielpt_BR
dc.contributor.authorGrippo, Luciano Norbertopt_BR
dc.contributor.authorSafe, Martín Daríopt_BR
dc.contributor.authorTrevisan, Vilmarpt_BR
dc.date.accessioned2019-02-20T02:36:52Zpt_BR
dc.date.issued2018pt_BR
dc.identifier.issn1077-8926pt_BR
dc.identifier.urihttp://hdl.handle.net/10183/188908pt_BR
dc.description.abstractThe parameter (G) of a graph G stands for the number of Laplacian eigenvalues greater than or equal to the average degree of G. In this work, we address the problem of characterizing those graphs G having (G) = 1. Our conjecture is that these graphs are stars plus a (possible empty) set of isolated vertices. We establish a link between (G) and the number of anticomponents of G. As a by-product, we present some results which support the conjecture, by restricting our analysis to cographs, forests, and split graphs.en
dc.format.mimetypeapplication/pdfpt_BR
dc.language.isoengpt_BR
dc.relation.ispartofThe Electronic Journal of Combinatorics. United States. Vol. 25, n. 4, 2018, p. 1-10, P4.65pt_BR
dc.rightsOpen Accessen
dc.subjectGraphsen
dc.subjectGrafospt_BR
dc.subjectLaplacian matrixen
dc.subjectMatriz laplacianapt_BR
dc.subjectLaplacian eigenvaluesen
dc.titlePartial characterization of graphs having a single large Laplacian eigenvaluept_BR
dc.typeArtigo de periódicopt_BR
dc.identifier.nrb001088424pt_BR
dc.type.originEstrangeiropt_BR


Ficheros en el ítem

Thumbnail
   

Este ítem está licenciado en la Creative Commons License

Mostrar el registro sencillo del ítem