End-to-end bone age assessment with residual learning
Visualizar/abrir
Data
2018Autor
Orientador
Co-orientador
Nível acadêmico
Graduação
Outro título
Avaliação da idade óssea utilizando aprendizado residual
Assunto
Resumo
A idade óssea é uma métrica usada para estimar o nível de maturidade biológica de crianças e adolescentes. Sua avaliação é parte crucial do diagnóstico de uma variedade de enfermidades pediátricas que afetam o crescimento, como distúrbios endócrinos. O método mais comumente utilizado para a avaliação da idade óssea ainda é baseado na comparação da radiografia de mão e punho do paciente com um atlas de idade óssea. Este método, entretanto, requer um tempo considerável, necessita de um avaliador ...
A idade óssea é uma métrica usada para estimar o nível de maturidade biológica de crianças e adolescentes. Sua avaliação é parte crucial do diagnóstico de uma variedade de enfermidades pediátricas que afetam o crescimento, como distúrbios endócrinos. O método mais comumente utilizado para a avaliação da idade óssea ainda é baseado na comparação da radiografia de mão e punho do paciente com um atlas de idade óssea. Este método, entretanto, requer um tempo considerável, necessita de um avaliador experiente, e sofre de alta variabilidade entre avaliadores, prejudicando um diagnóstico preciso. Nós apresentamos uma abordagem baseada em deep learning para estimar a idade óssea a partir de radiografias. Nossa abordagem proporciona uma solução rápida e determinística para avaliação de idade óssea. Nós demonstramos a efetividade do nosso método usando o mesmo para avaliar um conjunto de 200 radiografias, comparando os resultados com avalições feitas por radiologistas. Este experimento mostrou que a perfomance do nosso método é comparável à perfomance de um radiologista experiente. Nosso sistema está disponível on-line, proporcionando um serviço global e gratuito para médicos trabalhando em áreas remotas ou instituições sem radiologistas especializados, assim como para a população em geral. ...
Instituição
Universidade Federal do Rio Grande do Sul. Instituto de Informática. Curso de Engenharia de Computação.
Coleções
-
TCC Engenharias (5853)
Este item está licenciado na Creative Commons License