Show simple item record

dc.contributor.authorHoyle, Benpt_BR
dc.contributor.authorSantiago, Basilio Xavierpt_BR
dc.contributor.authorDES Collaborationpt_BR
dc.date.accessioned2018-09-26T02:34:01Zpt_BR
dc.date.issued2018pt_BR
dc.identifier.issn0035-8711pt_BR
dc.identifier.urihttp://hdl.handle.net/10183/182721pt_BR
dc.description.abstractWe describe the derivation and validation of redshift distribution estimates and their uncertainties for the populations of galaxies used as weak-lensing sources in the Dark Energy Survey (DES) Year 1 cosmological analyses. The Bayesian Photometric Redshift (BPZ) code is used to assign galaxies to four redshift bins between z ≈ 0.2 and ≈1.3, and to produce initial estimates of the lensing-weighted redshift distributions ni PZ(z) ∝ dni/dz for members of bin i. Accurate determination of cosmological parameters depends critically on knowledge of ni, but is insensitive to bin assignments or redshift errors for individual galaxies. The cosmological analyses allow for shifts ni (z) = ni PZ(z − zi ) to correct themean redshift of ni(z) for biases in ni PZ. The zi are constrained by comparison of independently estimated 30-band photometric redshifts of galaxies in the Cosmic Evolution Survey (COSMOS) field to BPZ estimates made from the DES griz fluxes, for a sample matched in fluxes, pre-seeing size, and lensing weight to the DES weak-lensing sources. In companion papers, the zi of the three lowest redshift bins are further constrained by the angular clustering of the source galaxies around red galaxies with secure photometric redshifts at 0.15 < z < 0.9. This paper details the BPZ and COSMOS procedures, and demonstrates that the cosmological inference is insensitive to details of the ni(z) beyond the choice of zi. The clustering and COSMOS validation methods produce consistent estimates of zi in the bins where both can be applied, with combined uncertainties of σ zi = 0.015, 0.013, 0.011, and 0.022 in the four bins. Repeating the photo-z procedure instead using the Directional Neighbourhood Fitting algorithm, or using the ni(z) estimated from the matched sample in COSMOS, yields no discernible difference in cosmological inferences.en
dc.format.mimetypeapplication/pdfpt_BR
dc.language.isoengpt_BR
dc.relation.ispartofMonthly notices of the royal astronomical society. Oxford. Vol. 478, no. 1 (July 2018), p. 592-610pt_BR
dc.rightsOpen Accessen
dc.subjectDeslocamento para o vermelhopt_BR
dc.subjectMethodsen
dc.subjectData analysisen
dc.subjectCatalogos astronomicospt_BR
dc.subjectFotometria astronômicapt_BR
dc.subjectCataloguesen
dc.subjectSurveysen
dc.titleDark Energy Survey Year 1 results : redshift distributions of the weak-lensing source galaxiespt_BR
dc.typeArtigo de periódicopt_BR
dc.identifier.nrb001074982pt_BR
dc.type.originEstrangeiropt_BR


Files in this item

Thumbnail
   

This item is licensed under a Creative Commons License

Show simple item record