Show simple item record

dc.contributor.authorGiardino Filho, Sergio Augustopt_BR
dc.date.accessioned2018-07-10T02:33:00Zpt_BR
dc.date.issued2018pt_BR
dc.identifier.issn0188-7009pt_BR
dc.identifier.urihttp://hdl.handle.net/10183/180276pt_BR
dc.description.abstractThe breakdown of Ehrenfest’s theorem imposes serious limitations on quaternionic quantum mechanics (QQM). In order to determine the conditions in which the theorem is valid, we examined the conservation of the probability density, the expectation value and the classical limit for a non-anti-hermitian formulation of QQM. The results also indicated that the non-anti-hermitian quaternionic theory is related to non-hermitian quantum mechanics, and thus the physical problems described with both of the theories should be related.en
dc.format.mimetypeapplication/pdfpt_BR
dc.language.isoengpt_BR
dc.relation.ispartofAdvances in Applied Clifford Algebras. Germany: Springer Verlang, 2018. Vol. 28, no. 1 (2018), 11 p.pt_BR
dc.rightsOpen Accessen
dc.subjectMecanica quantica : Matematicapt_BR
dc.subjectMatematica aplicada : Mecanicapt_BR
dc.titleNon-anti-hermitian Quaternionic Quantum Mechanicspt_BR
dc.typeArtigo de periódicopt_BR
dc.identifier.nrb001070889pt_BR
dc.type.originEstrangeiropt_BR


Files in this item

Thumbnail
   

This item is licensed under a Creative Commons License

Show simple item record