Axiomatic systemic risk measures forecasting
View/ Open
Date
2018Author
Advisor
Academic level
Master
Type
Subject
Abstract
In this work, we deepen the study of systemic risk measurement via aggregation functions. We consider three different portfolios as a proxy for an economic system, these portfolios are consisted in two aggregation functions, based on all U.S. stocks and a market index. The risk measures applied are Value at Risk (VaR), Expected Shortfall (ES) and Expectile Value at Risk (EVaR), they are forecasted via the classical GARCH model along with nine distribution probability functions and also by a non ...
In this work, we deepen the study of systemic risk measurement via aggregation functions. We consider three different portfolios as a proxy for an economic system, these portfolios are consisted in two aggregation functions, based on all U.S. stocks and a market index. The risk measures applied are Value at Risk (VaR), Expected Shortfall (ES) and Expectile Value at Risk (EVaR), they are forecasted via the classical GARCH model along with nine distribution probability functions and also by a nonparametric approach. The forecasts are evaluated by loss functions and violation backtests. Results indicate that our approach can generate an adequate aggregation function to process the risk of a system previously selected. ...
Abstract in Portuguese (Brasil)
Neste trabalho, aprofundamos o estudo sobre risco sistêmico via funções de agregação. Consideramos três carteiras diferentes como proxy para um sistema econômico, estas carteiras são consistidas por duas funções de agregação, baseadas em todos as ações do E.U.A, e um índice de mercado. As medidas de risco aplicadas são Value at Risk (VaR), Expected Shortfall (ES) and Expectile Value at Risk (EVaR), elas são previstas através do modelo GARCH clássico unido com nove funções de distribuição de pro ...
Neste trabalho, aprofundamos o estudo sobre risco sistêmico via funções de agregação. Consideramos três carteiras diferentes como proxy para um sistema econômico, estas carteiras são consistidas por duas funções de agregação, baseadas em todos as ações do E.U.A, e um índice de mercado. As medidas de risco aplicadas são Value at Risk (VaR), Expected Shortfall (ES) and Expectile Value at Risk (EVaR), elas são previstas através do modelo GARCH clássico unido com nove funções de distribuição de probabilidade diferentes e mais por um método não paramétrico. As previsões são avaliadas por funções de perda e backtests de violação. Os resultados indicam que nossa abordagem pode gerar uma função de agregação adequada para processar o risco de um sistema previamente selecionado. ...
Institution
Universidade Federal do Rio Grande do Sul. Escola de Administração. Programa de Pós-Graduação em Administração.
Collections
-
Applied and Social Sciences (6071)Administration (1952)
This item is licensed under a Creative Commons License