Desenvolvimento de biomateriais eletrofiados, biorreatores e modelos fenomenológicos para a engenharia de tecidos
Fecha
2017Autor
Co-director
Nivel académico
Doctorado
Tipo
Materia
Resumo
Uma potencial alternativa para o transplante de tecidos é a engenharia de tecidos. Células-tronco mesenquimais e scaffolds eletrofiados são comumente utilizados nesta área devido à capacidade multipotente de diferenciação destas células e à rede de poros interconectados destas estruturas fibrosas. Além disso, bioreatores de perfusão podem ser utilizados para melhorar o transporte de nutrientes e reduzir o acúmulo de metabolitos tóxicos. Neste contexto, uma maneira de estudar e otimizar o sistem ...
Uma potencial alternativa para o transplante de tecidos é a engenharia de tecidos. Células-tronco mesenquimais e scaffolds eletrofiados são comumente utilizados nesta área devido à capacidade multipotente de diferenciação destas células e à rede de poros interconectados destas estruturas fibrosas. Além disso, bioreatores de perfusão podem ser utilizados para melhorar o transporte de nutrientes e reduzir o acúmulo de metabolitos tóxicos. Neste contexto, uma maneira de estudar e otimizar o sistema de cultivo é utilizar técnicas de modelagem para descrever interações ou processos individuais envolvidos no crescimento celular. Deste modo, o objetivo geral deste estudo é realizar o cultivo de células-tronco mesenquimais da polpa de dente decíduo (DPSCs) utilizando scaffolds tridimensionais eletrofiados de policaprolactona (PCL), biorreatores e técnicas de modelagem. Inicialmente foram testadas diferentes misturas de solventes (clorofórmio e metanol), a fim de produzir scaffolds com poros adequados ao cultivo tridimensional. Os diâmetros de fibra e de poro foram determinados por microscopia eletrônica de varredura (MEV). O crescimento e o metabolismo das células foram avaliados através da determinação da atividade metabólica e das concentrações de glicose e lactato do meio de cultivo, e a infiltração celular foi observada com a marcação do núcleo celular. Depois de estabelecidos os parâmetros de eletrofiação, o efeito da perfusão direta no desprendimento de DPSCs de scaffolds eletrofiados de PCL foi estudado. A atividade metabólica das células foi determinada para diferentes tempos de adesão, vazões e densidades de semeadura, e a tensão de cisalhamento na parede do poro foi calculada para cada vazão. A morfologia das células foi avaliada através de imagens de microscopia confocal e MEV. Paralelamente, foram realizadas simulações utilizando o software OpenFOAM para estudar como os parâmetros e variáveis de entrada (concentração inicial de glicose, porosidade e espessura do scaffold) afetam as saídas (fração volumétrica de células e concentração de substrato) de um modelo de proliferação celular que considera a difusão e o consumo de glicose. As contribuições do teor de oxigêno na cinética de crescimento de Contois e da variação da porosidade com o tempo devido à degradação do polímero também foram avaliadas. Inicialmente, foi observado que apenas um tamanho de poro maior que o diâmetro da célula permitiu a infiltração das células no scaffold. Então, observou-se que o aumento do tempo de adesão acarretou em maior espalhamento das células e, assim como a diminuição da densidade de semeadura e da tensão de cisalhamento, resultou em uma redução do desprendimento das células sob perfusão. Quanto ao modelo fenomenológico, observou-se maior sensibilidade à concentração inicial de glicose e à porosidade do scaffold, e aos parâmetros adimensionais relacionados à proliferação e morte celular e ao consumo de nutrientes. Além disso, o número inicial de células apresentou maior impacto no transporte de massa do que no crescimento celular. Neste estudo, foi possível obter scaffolds eletrofiados e conduções de cultivo dinâmico adequadas ao cultivo tridimensional de DPSCs, e elucidar os efeitos da limitação do transporte de massa e do oxigênio no crescimento celular, e da degradação do polímero no transporte de massa. ...
Abstract
A potential alternative to tissue transplant is tissue engineering. Mesenchymal stem cells and electrospun scaffolds are commonly used in this field due to the multipotent differentiation capacity of these cells and the interconnected pore network of these fibrous structures. In addition, perfusion bioreactors can be used to enhance nutrient transport and reduce the accumulation of toxic metabolites. In this context, one way to study and optimize the culture system is to use modeling techniques ...
A potential alternative to tissue transplant is tissue engineering. Mesenchymal stem cells and electrospun scaffolds are commonly used in this field due to the multipotent differentiation capacity of these cells and the interconnected pore network of these fibrous structures. In addition, perfusion bioreactors can be used to enhance nutrient transport and reduce the accumulation of toxic metabolites. In this context, one way to study and optimize the culture system is to use modeling techniques to describe interactions or individual processes involved in cell growth. Thus, the objective of this study is to perform the three-dimensional culture of mesenchymal stem cells of dental pulp (DPSCs) using electrospun polycaprolactone (PCL) scaffolds, bioreactors and modeling techniques. Initially, different solvent mixtures (chloroform and methanol) were tested to produce scaffolds with pores suitable to three-dimensional culture. Fiber and pore diameter was determined using a scanning electron microscope. Cell growth and metabolism were evaluated through the metabolic activity and the culture medium concentration of glucose and lactate, and the cell infiltration was observed with cell nuclei staining. After the establishment of the elesctrospinning parameters, the effect of direct perfusion on DPSCs detachment from PCL electrospun scaffolds was investigated. The metabolic activity of the cells was determined for different adhesion times, flow rates and seeding densities and the pore wall shear stress was calculated for each flow rate. The cell morphology was evaluated through scanning electron and confocal microscopy imaging. In parallel, simulations with the software OpenFOAM were performed to study how parameters and inputs (initial glucose concentration, porosity and thickness of the scaffold) affect the outputs (cell volume fraction and substrate concentration) of a model of cell proliferation and glucose diffusion and consumption. The contribution of the oxygen in the Contois growth kinetics and the porosity variation with time due to polymer degradation was also evaluated. Initially, it was observed that only a pore size higher than the cell diameter allowed the infiltration of the cells through the scaffold. Then, it was observed that a higher adhesion time leaded to higher cell spreading in static conditions and, similar to smaller seeding densities and shear stresses, reduced cell detachment under perfusion. Regarding the phenomenological model, it was observed that the model is more responsive to the initial glucose concentration and scaffold porosity, and to the dimensionless parameters related to cell proliferation, death and nutrient uptake. Furthermore, the initial cell number had a more significant impact on mass transport than on cell growth. In this study, it was possible to obtain an electrospun scaffold and dynamic culture conditions suitable for the three-dimensional culture of DPSCs, and to elucidate the effects of transport limitations and of oxygen on cell growth, and of polymer degradation on mass transport were elucidated. ...
Institución
Universidade Federal do Rio Grande do Sul. Escola de Engenharia. Programa de Pós-Graduação em Engenharia Química.
Colecciones
-
Ingeniería (7412)Ingeniería Química (516)
Este ítem está licenciado en la Creative Commons License