Curvas e superfícies dianodais de Cayley-Halphen
View/ Open
Date
2009Author
Advisor
Academic level
Master
Type
Subject
Abstract in Portuguese (Brasil)
Um pencil de Halphen é uma família a um parâmetro de curvas sêxticas planas com nove pontos duplos pré-fixados. Estes nove pontos não podem ser escolhidos ao acaso: fixados oito em posição geral, o nono deve pertencer à curva dianodal de Cayley. Neste trabalho abordamos diferentes métodos de construção da curva dianodal. Estudamos também a superfície dianodal, lugar geométrico de um oitavo ponto duplo isolado de superfícies quárticas de CP³. Estes assuntos são relacionados com as involuçães de ...
Um pencil de Halphen é uma família a um parâmetro de curvas sêxticas planas com nove pontos duplos pré-fixados. Estes nove pontos não podem ser escolhidos ao acaso: fixados oito em posição geral, o nono deve pertencer à curva dianodal de Cayley. Neste trabalho abordamos diferentes métodos de construção da curva dianodal. Estudamos também a superfície dianodal, lugar geométrico de um oitavo ponto duplo isolado de superfícies quárticas de CP³. Estes assuntos são relacionados com as involuçães de Bertini e Kantor. ...
Abstract
Institution
Universidade Federal do Rio Grande do Sul. Instituto de Matemática. Programa de Pós-Graduação em Matemática Aplicada.
Collections
-
Exact and Earth Sciences (5129)Applied Mathematics (285)
This item is licensed under a Creative Commons License