SoMMA : a software managed memory architecture for multi-issue processors
Visualizar/abrir
Data
2017Autor
Orientador
Co-orientador
Nível acadêmico
Mestrado
Tipo
Assunto
Resumo
Processadores embarcados utilizam eficientemente o paralelismo a nível de instrução para atender as necessidades de desempenho e energia em aplicações atuais. Embora a melhoria de performance seja um dos principais objetivos em processadores em geral, ela pode levar a um impacto negativo no consumo de energia, uma restrição crítica para sistemas atuais. Nesta dissertação, apresentamos o SoMMA, uma arquitetura de memória gerenciada por software para processadores embarcados capaz de reduz consum ...
Processadores embarcados utilizam eficientemente o paralelismo a nível de instrução para atender as necessidades de desempenho e energia em aplicações atuais. Embora a melhoria de performance seja um dos principais objetivos em processadores em geral, ela pode levar a um impacto negativo no consumo de energia, uma restrição crítica para sistemas atuais. Nesta dissertação, apresentamos o SoMMA, uma arquitetura de memória gerenciada por software para processadores embarcados capaz de reduz consumo de energia e energy-delay product (EDP), enquanto ainda aumenta a banda de memória. A solução combina o uso de memórias gerenciadas por software com a cache de dados, de modo a reduzir o consumo de energia e EDP do sistema. SoMMA também melhora a performance do sistema, pois os acessos à memória podem ser realizados em paralelo, sem custo em portas de memória extra na cache de dados. Transformações de código do compilador auxiliam o programador a utilizar a arquitetura proposta. Resultados experimentais mostram que SoMMA é mais eficiente em termos de energia e desempenho tanto a nível de processador quanto a nível do sistema completo. A técnica apresenta speedups de 1.118x e 1.121x, consumindo 11% e 12.8% menos energia quando comparando processadores que utilizam e não utilizam SoMMA. Há ainda redução de até 41.5% em EDP do sistema, sempre mantendo a área dos processadores equivalentes. Por fim, SoMMA também reduz o número de cache misses quando comparado ao processador baseline. ...
Abstract
Embedded processors rely on the efficient use of instruction-level parallelism to answer the performance and energy needs of modern applications. Though improving performance is the primary goal for processors in general, it might lead to a negative impact on energy consumption, a particularly critical constraint for current systems. In this dissertation, we present SoMMA, a software-managed memory architecture for embedded multi-issue processors that can reduce energy consumption and energy-de ...
Embedded processors rely on the efficient use of instruction-level parallelism to answer the performance and energy needs of modern applications. Though improving performance is the primary goal for processors in general, it might lead to a negative impact on energy consumption, a particularly critical constraint for current systems. In this dissertation, we present SoMMA, a software-managed memory architecture for embedded multi-issue processors that can reduce energy consumption and energy-delay product (EDP), while still providing an increase in memory bandwidth. We combine the use of software-managed memories (SMM) with the data cache, and leverage the lower energy access cost of SMMs to provide a processor with reduced energy consumption and EDP. SoMMA also provides a better overall performance, as memory accesses can be performed in parallel, with no cost in extra memory ports. Compiler-automated code transformations minimize the programmer’s effort to benefit from the proposed architecture. Our experimental results show that SoMMA is more energy- and performance-efficient not only for the processing cores, but also at full-system level. Comparisons were done using the VEX processor, a VLIW reconfigurable processor. The approach shows average speedups of 1.118x and 1.121x, while consuming up to 11% and 12.8% less energy when comparing two modified processors and their baselines. SoMMA also shows reduction of up to 41.5% on full-system EDP, maintaining the same processor area as baseline processors. Lastly, even with SoMMA halving the data cache size, we still reduce the number of data cache misses in comparison to baselines. ...
Instituição
Universidade Federal do Rio Grande do Sul. Instituto de Informática. Programa de Pós-Graduação em Computação.
Coleções
-
Ciências Exatas e da Terra (5129)Computação (1764)
Este item está licenciado na Creative Commons License