Mostrar registro simples

dc.contributor.advisorSilva Junior, Edson Prestes ept_BR
dc.contributor.authorJorge, Vitor Augusto Machadopt_BR
dc.date.accessioned2017-06-14T02:33:47Zpt_BR
dc.date.issued2012pt_BR
dc.identifier.urihttp://hdl.handle.net/10183/159543pt_BR
dc.description.abstractLine detection algorithms are used by many application fields, such as computer vision and automation, as a basis for more complex analysis. For instance, line information can be used as input to object detection algorithms or even attitude estimation in flying robots. One way to detect lines is to use an isotropic nonlinear filtering procedure called the Wide Line Detector (WLD). This algorithm is effective to highlight the line pixels in gray scale images, separating dark or bright lines. However, line detection algorithms are not normally concerned with the pixel-wise estimation of thickness. If available, such information could be further explored by computer vision algorithms. Furthermore, color is extensively used in computer vision as an object discriminant, but not by the WLD. In this work, we propose the extension of the WLD to color images. We also develop a method that allows the estimation of the line width locally using only the density information and no border or center line information. Finally, we develop a new monotonically increasing kernel that is more efficient and yet effective to detect lines than the monotonically decreasing kernels used by the WLD. Finally, we devise a way ro obtain the wideline thickness from the density estimate obtained from the similarity between pixels, reverting the process used by the WLD to determine which kernel should be used. We perform several experiments with the proposed method, considering different parameters, and comparing it to the traditional WLD algorithm to assess the effectiveness of the method.en
dc.description.abstractAlgoritmos de detecção de linhas são usados em muitos campos de aplicação, tais como visão computacional e automação como base para análises mais complexas. Por exemplo, a informação de linha pode ser usada como dado de entrada para algoritmos de detecção de objetos ou mesmo para a estimativa da orientação espacial de robôs aéreos. Uma das formas de detectar linhas é através do uso de um processo de filtragem não linear chamado deWide Line Detector (WLD). Esse algoritmo é eficaz na marcação de pixels de linha em imagens em tons de cinza, separando linhas claras ou linhas escuras. Contudo, os algoritmos de detecção de linha não estão normalmente preocupados com a estimativa de largura local individual associada a um pixel. Se disponível, tal informação poderia ser explorada por algoritmos de visão computacional. Além do mais, a informação de cor também é extensivamente usada em visão computacional como um discriminante de objetos, mas o WLD não a usa. Neste Trabalho, nós propusemos a extensão do WLD para imagens em cores. Nós também desenvolvemos um novo kernel monotonicamente crescente que é mais eficiente e mais robusto para detectar linhas do que que os kernels monotonicamente decrescentes usados pelo WLD. Por fim, desenvolvemos uma maneira de obter uma estimativa de largura de linha partindo da densidade local associada a similaridade entre pixels, revertendo o processo usado pelo WLD para estimar qual kernel deve ser usado. Diversos experimentos foram realizados com o método proposto considerando diferentes parâmetros, além da comparação com o WLD tradicional, para analizar a eficácia do método.pt_BR
dc.format.mimetypeapplication/pdfpt_BR
dc.language.isoengpt_BR
dc.rightsOpen Accessen
dc.subjectComputação gráficapt_BR
dc.subjectWide line detectoren
dc.subjectColor wide line detectoren
dc.subjectProcessamento de imagenspt_BR
dc.subjectIsotropic filteringen
dc.subjectLocal density estimateen
dc.titleColor wideline detector and local width estimationpt_BR
dc.title.alternativeUm detector de linhas largas para imagens coloridas e estimativa local de largura de linha pt
dc.typeDissertaçãopt_BR
dc.contributor.advisor-coNedel, Luciana Porcherpt_BR
dc.identifier.nrb001023483pt_BR
dc.degree.grantorUniversidade Federal do Rio Grande do Sulpt_BR
dc.degree.departmentInstituto de Informáticapt_BR
dc.degree.programPrograma de Pós-Graduação em Computaçãopt_BR
dc.degree.localPorto Alegre, BR-RSpt_BR
dc.degree.date2012pt_BR
dc.degree.levelmestradopt_BR


Thumbnail
   

Este item está licenciado na Creative Commons License

Mostrar registro simples