Estimador subsemble espacial para dados massivos em geoestatística
View/ Open
Date
2016Author
Advisor
Academic level
Doctorate
Type
Subject
Abstract in Portuguese (Brasil)
Um problema que vem se tornando habitual em análise geoestatística é a quantidade crescente de observações. Em tais casos é comum que estimadores usualmente utilizados não possam ser empregados devido a dificuldades numéricas. Esta tese têm por objetivo propor um novo estimador para massivas observações em geoestatística: o estimador subsemble espacial. O estimador subsemble espacial seleciona várias subamostras, espacialmente estruturadas, do conjunto completo de dados. Cada subamostra estima ...
Um problema que vem se tornando habitual em análise geoestatística é a quantidade crescente de observações. Em tais casos é comum que estimadores usualmente utilizados não possam ser empregados devido a dificuldades numéricas. Esta tese têm por objetivo propor um novo estimador para massivas observações em geoestatística: o estimador subsemble espacial. O estimador subsemble espacial seleciona várias subamostras, espacialmente estruturadas, do conjunto completo de dados. Cada subamostra estima com facilidade os parâmetros do modelo e as estimativas resultantes são ponderadas através de um subconjunto de validação. Em estudos simulados, compara-se a metodologia proposta com outros métodos e os resultados apresentam sua acurácia e rapidez. Além disso, uma aplicação em um banco de dados reais, com 11.000 observações, confirma essas características. ...
Abstract
A problem that is becoming common in geostatistical analysis is the growing number of observations. In such cases, common estimators cannot be used due to numerical difficulties. This thesis proposes a new estimator for massive observations in geostatistics: the spatial subsemble estimator. The estimator selects small spatially structured subset of observations. The model parameters are estimated easily with each subsample, and the resulting estimates are weighted by a subset of validation. We ...
A problem that is becoming common in geostatistical analysis is the growing number of observations. In such cases, common estimators cannot be used due to numerical difficulties. This thesis proposes a new estimator for massive observations in geostatistics: the spatial subsemble estimator. The estimator selects small spatially structured subset of observations. The model parameters are estimated easily with each subsample, and the resulting estimates are weighted by a subset of validation. We compare the spatial subsemble with competing alternatives showing that it is faster and accurate. In addition, we present an application in a real database with 11000 observations. ...
Institution
Universidade Federal de Minas Gerais. Instituto de Ciências Exatas Departamento de Estatística.
Collections
This item is licensed under a Creative Commons License