Módulos injetivos e a dualidade de Matlis
Visualizar/abrir
Data
2015Orientador
Nível acadêmico
Mestrado
Tipo
Assunto
Resumo
O objetivo desta dissertação é estudar a caracterização dos módulos injetivos sobre anéis noetherianos e comutativos, dada por Eben Matlis em [16], como soma direta de módulos da forma E(A P ). Assim, discutimos algumas propriedades dos mó- dulos injetivos indecomponíveis sobre esses tipos de anéis. Em particular, mostramos que o completamento do anel local Ap é isomorfo ao anel HomA(E(A P );E(A P )). A partir disso, mostramos que, quando o anel for comutativo, noetheriano, local e completo, en ...
O objetivo desta dissertação é estudar a caracterização dos módulos injetivos sobre anéis noetherianos e comutativos, dada por Eben Matlis em [16], como soma direta de módulos da forma E(A P ). Assim, discutimos algumas propriedades dos mó- dulos injetivos indecomponíveis sobre esses tipos de anéis. Em particular, mostramos que o completamento do anel local Ap é isomorfo ao anel HomA(E(A P );E(A P )). A partir disso, mostramos que, quando o anel for comutativo, noetheriano, local e completo, então a categoria dos módulos noetherianos e a categoria dual dos módulos artinianos são equivalentes. ...
Abstract
The goal of this work is to study the characterization of injective modules over Noetherian and commutative rings, given by Eben Matlis in [16], as a direct sum of modules of the form E(A P ). Thus, we discuss some properties of injective indecomposable modules over these types of rings. In particular, we show that the completion of the local ring Ap is isomorphic to the ring HomA(E(A P );E(A P )). From this, we show that, when a ring is commutative, noetherian, local and complete, the category ...
The goal of this work is to study the characterization of injective modules over Noetherian and commutative rings, given by Eben Matlis in [16], as a direct sum of modules of the form E(A P ). Thus, we discuss some properties of injective indecomposable modules over these types of rings. In particular, we show that the completion of the local ring Ap is isomorphic to the ring HomA(E(A P );E(A P )). From this, we show that, when a ring is commutative, noetherian, local and complete, the category of the Noetherian modules and the dual category of Artinian modules are equivalent. ...
Instituição
Universidade Federal do Rio Grande do Sul. Instituto de Matemática. Programa de Pós-Graduação em Matemática.
Coleções
-
Ciências Exatas e da Terra (5143)Matemática (367)
Este item está licenciado na Creative Commons License