Aplicações das bases de Groebner
dc.contributor.advisor | Doering, Luisa Rodriguez | pt_BR |
dc.contributor.author | Silva Junior, Danton Pereira da | pt_BR |
dc.date.accessioned | 2015-09-26T02:33:18Z | pt_BR |
dc.date.issued | 1999 | pt_BR |
dc.identifier.uri | http://hdl.handle.net/10183/127103 | pt_BR |
dc.description.abstract | Neste trabalho estudamos os homomorfismos entre anéis de polinômios do ponto de vista da teoria de bases de Groebner. Em particular, determinamos o núcleo de um tal homomorfismo e desenvolvemos um método para determinar quando este é sobrejetivo. Estes resultados são então generalizados para anéis quocientes. O estudo de tais homomorfismos nos permite determinar os polinômos minimais de elementos em extensões de corpos, bem como encontrar soluções para um problema de programação inteira. | pt_BR |
dc.description.abstract | In this work we study the homomorphisms between polynomial rings as an application of the Groebner basis theory. In particular, we determine generators for the kemel of such a homomorphism and we give a method to determine whether it is onto. We then generalize these results to the case of quocient rings. The study of these homomorphisms allows us to determine mini mal polynomials of elements in field extensions, as well as to find solutions to an integer programming problem. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | por | pt_BR |
dc.rights | Open Access | en |
dc.subject | Algebra computacional : Bases de groebner : Construcao de ferramentas computacionais : Engenharia : Ciencia da computacao : Aplicacao | pt_BR |
dc.subject | Aneis de polinomios : Homomorfismos | pt_BR |
dc.subject | Algoritmo de divisao : Ideais monomiais : Bases de hilbert : Bases de groebner : Algoritmo de buchberger : Ordens de eliminacao | pt_BR |
dc.subject | Homomorfismos de k-algebras : Aplicacao | pt_BR |
dc.subject | Extensoes de corpos : Polinomios minimais : Aplicacao | pt_BR |
dc.title | Aplicações das bases de Groebner | pt_BR |
dc.type | Dissertação | pt_BR |
dc.identifier.nrb | 000245549 | pt_BR |
dc.degree.grantor | Universidade Federal do Rio Grande do Sul | pt_BR |
dc.degree.department | Instituto de Matemática | pt_BR |
dc.degree.program | Programa de Pós-Graduação em Matemática | pt_BR |
dc.degree.local | Porto Alegre, BR-RS | pt_BR |
dc.degree.date | 1999 | pt_BR |
dc.degree.level | mestrado | pt_BR |
Files in this item
This item is licensed under a Creative Commons License
-
Exact and Earth Sciences (5129)Mathematics (366)